-
Notifications
You must be signed in to change notification settings - Fork 238
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[nb] Converted to py:percent format.
pipx run jupytext --to py:percent Tests/Data/Mechanics/Linear/test_ip_data/2D-clamped-gravity.ipynb
- Loading branch information
Showing
3 changed files
with
365 additions
and
589 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
588 changes: 0 additions & 588 deletions
588
Tests/Data/Mechanics/Linear/test_ip_data/2D-clamped-gravity.ipynb
This file was deleted.
Oops, something went wrong.
364 changes: 364 additions & 0 deletions
364
Tests/Data/Mechanics/Linear/test_ip_data/2D-clamped-gravity.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,364 @@ | ||
# --- | ||
# jupyter: | ||
# jupytext: | ||
# text_representation: | ||
# extension: .py | ||
# format_name: percent | ||
# format_version: '1.3' | ||
# jupytext_version: 1.14.5 | ||
# kernelspec: | ||
# display_name: ogs-local-release-build | ||
# language: python | ||
# name: ogs-local-release-build | ||
# --- | ||
|
||
# %% [markdown] | ||
# # Deformation of a linear elastic Material due to its own gravity | ||
|
||
# %% | ||
import pyvista as pv | ||
import numpy as np | ||
|
||
pv.set_jupyter_backend("static") | ||
|
||
import matplotlib.pyplot as plt | ||
import subprocess | ||
import os | ||
import sys | ||
|
||
# %% | ||
outdir = os.environ.get("OGS_TESTRUNNER_OUT_DIR", "_out") | ||
if not os.path.exists(outdir): | ||
os.makedirs(outdir) | ||
with open(os.path.join(outdir, ".gitignore"), "w") as fh: | ||
fh.write("*\n") | ||
|
||
# %% [markdown] | ||
# # Problem Description | ||
|
||
# %% [markdown] | ||
# We consider a linear elastic isotropic material in 2D subject to plane strain conditions. | ||
# The material specimen is clamped in $x$ direction and subject only to its own gravity. | ||
# The domain is the rectangle $[0, X] \times [0, Y]$. | ||
# | ||
# $$ | ||
# \def\myvec#1{\underline{#1}} | ||
# \def\mymat#1{\underline{\underline{#1}}} | ||
# % | ||
# \begin{align*} | ||
# u_x\bigr|_{x=0} &= 0 \\ | ||
# u_x\bigr|_{x=X} &= 0 \\ | ||
# u_y\bigr|_{y=0} &= 0 \\ | ||
# \sigma_{yy}\bigr|_{y=Y} &= 0 | ||
# \end{align*} | ||
# $$ | ||
# | ||
# The governing equation is | ||
# | ||
# $$ | ||
# \mathop{\mathrm{div}} \mymat{\sigma} = -\myvec{f} = (0, -\rho g)^T | ||
# $$ | ||
|
||
# %% [markdown] | ||
# # Parameters | ||
|
||
# %% | ||
rho = 1 # kg/m³, density | ||
g = -9.81 # m/s², gravitational acceleration | ||
nu = 0.3 # Poisson ratio | ||
E = 1e6 # Pa, Young's modulus | ||
X = 1 # m, width of the domain | ||
Y = 1 # m, height of the domain | ||
|
||
|
||
# %% [markdown] | ||
# # Analytical Solution | ||
|
||
# %% [markdown] | ||
# In the plane strain setting $\epsilon_{xz} = \epsilon_{yz} = \epsilon_{zz} = 0$. | ||
# In that setting Hooke's law is | ||
# | ||
# $$ | ||
# \myvec{\epsilon} | ||
# = \begin{pmatrix} \epsilon_{xx} \\ \epsilon_{yy} \\ \epsilon_{xy} \end{pmatrix} | ||
# = \frac{1}{2G} \begin{pmatrix} | ||
# 1-\nu & -\nu & 0 \\ | ||
# -\nu & 1-\nu & 0 \\ | ||
# 0 & 0 & 1 | ||
# \end{pmatrix} | ||
# \begin{pmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \end{pmatrix} | ||
# $$ | ||
# | ||
# The clamping in $x$ direction yields $\epsilon_{xx} = 0$. | ||
# Furthermore, there are no shear stresses/strains: $\epsilon_{xy} = 0$, $\sigma_{xy} = 0$. | ||
# Therefore, the governing equation for $\sigma_{yy}$ reduces to | ||
# $$ | ||
# \partial_y \sigma_{yy} = -\rho g | ||
# $$ | ||
# Integrating that and using the stress boundary condition yields | ||
# $$ | ||
# \sigma_{yy} = \rho g \, (Y - y) | ||
# $$ | ||
# The other normal stresses follow as | ||
# $$ | ||
# \sigma_{xx} = \sigma_{zz} = \frac{\nu}{1-\nu}\sigma_{yy} | ||
# $$ | ||
# For the normal strain in $y$ direction we get | ||
# $$ | ||
# \epsilon_{yy} = \frac{1+\nu}{E} \frac{1-2\nu}{1-\nu} \sigma_{yy} | ||
# $$ | ||
# And finally for the $y$ displacement | ||
# $$ | ||
# u_y = \frac{1+\nu}{E} \frac{1-2\nu}{1-\nu} \rho g \bigl(Yy - \tfrac12 y^2\bigr) | ||
# $$ | ||
|
||
|
||
# %% | ||
def sigma_yy_ana(y): | ||
return rho * g * (Y - y) | ||
|
||
|
||
def sigma_xx_ana(y): | ||
return nu / (1 - nu) * sigma_yy_ana(y) | ||
|
||
|
||
def sigma_zz_ana(y): | ||
return nu / (1 - nu) * sigma_yy_ana(y) | ||
|
||
|
||
factor_eps_yy_nu_E = (1 + nu) / E * (1 - 2 * nu) / (1 - nu) | ||
|
||
|
||
def eps_yy_ana(y): | ||
return factor_eps_yy_nu_E * sigma_yy_ana(y) | ||
|
||
|
||
def u_y_ana(y): | ||
return factor_eps_yy_nu_E * rho * g * (Y * y - 0.5 * y**2) | ||
|
||
|
||
# %% [markdown] | ||
# # Run OGS | ||
|
||
# %% | ||
with open(os.path.join(outdir, "ogs-out.txt"), "w") as fh: | ||
subprocess.run( | ||
["ogs", "-o", outdir, "square_1e2_test_ip_data.prj"], | ||
check=True, | ||
stdout=fh, | ||
stderr=subprocess.STDOUT, | ||
) | ||
|
||
# %% | ||
# convert last result to point cloud | ||
with open(os.path.join(outdir, "point-cloud-out.txt"), "w") as fh: | ||
subprocess.run( | ||
[ | ||
"ipDataToPointCloud", | ||
"-i", | ||
os.path.join(outdir, "square_1e2_ts_4_t_1.000000.vtu"), | ||
"-o", | ||
os.path.join(outdir, "square_1e2_ts_4_point_cloud.vtu"), | ||
], | ||
check=True, | ||
stdout=fh, | ||
stderr=subprocess.STDOUT, | ||
) | ||
|
||
|
||
# %% [markdown] | ||
# # Read simulation results | ||
|
||
|
||
# %% | ||
def add_vertex_cells(mesh): | ||
num_points_per_cell = np.ones(mesh.n_points, dtype=int) | ||
point_ids_per_cell = np.arange(0, mesh.n_points, dtype=int) | ||
cells = np.vstack((num_points_per_cell, point_ids_per_cell)).T.ravel() | ||
celltypes = [pv.CellType.VERTEX] * mesh.n_points | ||
mesh_copy = pv.UnstructuredGrid(cells, celltypes, mesh.points) | ||
|
||
for n in mesh.point_data: | ||
mesh_copy.cell_data[n] = mesh.point_data[n] | ||
|
||
return mesh_copy | ||
|
||
|
||
# %% | ||
mesh = pv.read(os.path.join(outdir, "square_1e2_ts_4_t_1.000000.vtu")) | ||
mesh_pc = pv.read(os.path.join(outdir, "square_1e2_ts_4_point_cloud.vtu")) | ||
mesh_pc = add_vertex_cells(mesh_pc) # add vertex cells to make pyvista vis work | ||
|
||
# %% | ||
# make displacement 3D | ||
u = mesh.point_data["displacement"] | ||
mesh.point_data["displacement"] = np.hstack((u, np.zeros((u.shape[0], 1)))) | ||
|
||
# %% | ||
plotter = pv.Plotter() | ||
|
||
plotter.add_mesh( | ||
mesh_pc, | ||
scalars=mesh_pc.cell_data["sigma_ip"][:, 1], | ||
label="sigma_xx at integration points", | ||
point_size=5, | ||
render_points_as_spheres=True, | ||
scalar_bar_args={"title": "sigma_xx"}, | ||
lighting=False, | ||
) | ||
|
||
mesh_linear = mesh.linear_copy() # avoids tesselation artefacts in PyVista's rendering | ||
plotter.add_mesh( | ||
mesh_linear, | ||
style="wireframe", | ||
color="#bbbbbb", | ||
line_width=1, | ||
lighting=False, | ||
label="mesh", | ||
) | ||
plotter.add_mesh( | ||
mesh_linear.warp_by_vector(vectors="displacement", factor=2000), | ||
style="wireframe", | ||
color="k", | ||
line_width=2, | ||
lighting=False, | ||
label="warped mesh (factor 2000)", | ||
) | ||
|
||
plotter.add_axes() | ||
# plotter.add_legend() | ||
plotter.view_xy() | ||
plotter.add_title( | ||
"sigma_xx at integration points,\nmesh (grey), deformed mesh (black, factor 2000)", | ||
font_size=10, | ||
) | ||
plotter.show() | ||
|
||
# %% [markdown] | ||
# # Comparison to analytical solution | ||
# | ||
|
||
# %% [markdown] | ||
# ## Nodal displacement | ||
|
||
# %% | ||
sampled = mesh.sample_over_line((X / 2, 0, 0), (X / 2, Y, 0)) | ||
|
||
# %% | ||
ys = sampled.points[:, 1] | ||
u_ys_num = sampled.point_data["displacement"][:, 1] | ||
u_ys_ana = u_y_ana(ys) | ||
|
||
fig, (ax, ax2) = plt.subplots(1, 2, sharey=True) | ||
|
||
ax.plot(u_ys_num, ys, label="num") | ||
ax.plot(u_ys_ana, ys, label="ana") | ||
|
||
ax2.plot(u_ys_num - u_ys_ana, ys) | ||
assert np.allclose(u_ys_num, u_ys_ana, atol=2.1e-13, rtol=0) | ||
|
||
ax.set_ylabel("$y$ / m") | ||
ax2.set_xlabel(r"$\Delta u_y$ / m") | ||
|
||
ax.legend() | ||
|
||
ax | ||
fig.set_size_inches(12, 4) | ||
|
||
# %% | ||
# assert correctness of entire displacment field | ||
ys = mesh.points[:, 1] | ||
|
||
# u_y must match the analytical solutions | ||
assert np.allclose( | ||
mesh.point_data["displacement"][:, 1], u_y_ana(ys), atol=1e-15, rtol=0 | ||
) | ||
|
||
# u_x must be zero | ||
assert np.allclose(mesh.point_data["displacement"][:, 0], 0, atol=1e-15, rtol=0) | ||
|
||
# %% [markdown] | ||
# # Stress at Integration Points | ||
|
||
# %% | ||
ys = mesh_pc.points[:, 1] | ||
sigma_yys_num = mesh_pc.cell_data["sigma_ip"][:, 1] | ||
sigma_yys_ana = sigma_yy_ana(ys) | ||
|
||
sigma_xxs_num = mesh_pc.cell_data["sigma_ip"][:, 0] | ||
sigma_xxs_ana = sigma_xx_ana(ys) | ||
|
||
sigma_zzs_num = mesh_pc.cell_data["sigma_ip"][:, 2] | ||
sigma_zzs_ana = sigma_zz_ana(ys) | ||
|
||
fig, (ax, ax2) = plt.subplots(1, 2, sharey=True) | ||
|
||
(h,) = ax.plot(sigma_yys_num, ys, label="$yy$, num", ls="", marker=".") | ||
ax.plot(sigma_yys_ana, ys, label="$yy$, ana", color=h.get_color()) | ||
ax2.plot(sigma_yys_num - sigma_yys_ana, ys, ls="", marker=".") | ||
|
||
(h,) = ax.plot(sigma_xxs_num, ys, label="$xx$, num", ls="", marker="+") | ||
ax.plot(sigma_xxs_ana, ys, label="$xx$, ana", color=h.get_color()) | ||
ax2.plot(sigma_xxs_num - sigma_xxs_ana, ys, ls="", marker="+") | ||
|
||
(h,) = ax.plot(sigma_zzs_num, ys, label="$zz$, num", ls="", marker="x") | ||
ax.plot(sigma_zzs_ana, ys, label="$zz$, ana", ls="--", color=h.get_color()) | ||
ax2.plot(sigma_zzs_num - sigma_zzs_ana, ys, ls="", marker="x") | ||
|
||
ax.set_xlabel(r"$\sigma$ / Pa") | ||
ax2.set_xlabel(r"$\Delta\sigma$ / Pa") | ||
ax.set_ylabel("$y$ / m") | ||
|
||
ax.legend() | ||
|
||
ax | ||
fig.set_size_inches(12, 4) | ||
|
||
# %% [markdown] | ||
# # Checks (Assertions) | ||
|
||
# %% | ||
from IPython.display import display, HTML | ||
|
||
|
||
def allclose(x, y, abstol): | ||
d = np.max(np.abs(x - y)) | ||
|
||
if d <= abstol: | ||
return True | ||
|
||
xmin = np.min(x) | ||
xmax = np.max(x) | ||
ymin = np.min(y) | ||
ymax = np.max(y) | ||
|
||
display( | ||
HTML( | ||
f""" | ||
<div class="alert alert-block alert-danger"> | ||
<h3>Error in <span style="font-family: monospace;">allclose()</span></h3> | ||
difference of {d} exceeds abstol of {abstol}<br> | ||
field 1 ranges from {xmin} to {xmax} (delta = {xmax - xmin})<br> | ||
field 2 ranges from {ymin} to {ymax} (delta = {ymax - ymin})<br> | ||
</div> | ||
""" | ||
) | ||
) | ||
|
||
return False | ||
|
||
|
||
# %% | ||
# assert correctness of entire displacment field | ||
ys = mesh_pc.points[:, 1] | ||
|
||
# normal stress must match the analytical solutions | ||
# the tolerances are rather high due to the jumps in sigma over element edges | ||
assert allclose(mesh_pc.cell_data["sigma_ip"][:, 1], sigma_yy_ana(ys), 6e-14) | ||
assert allclose(mesh_pc.cell_data["sigma_ip"][:, 0], sigma_xx_ana(ys), 3e-14) | ||
assert allclose(mesh_pc.cell_data["sigma_ip"][:, 0], sigma_zz_ana(ys), 3e-14) | ||
|
||
# shear stress must be zero | ||
assert allclose(mesh_pc.cell_data["sigma_ip"][:, 3], 0, 2.3e-14) | ||
|
||
# %% |