This repository is the code for the paper "Improving Deep Lesion Detection Using 3D Contextual and Spatial Attention", MICCAI 2019. The code is extended from Ke Yan's implementation of 3DCE [2] (https://github.com/rsummers11/CADLab/tree/master/lesion_detector_3DCE). The dual attention design is implemented in rcnn/symbol/symbol_vgg.py to improve the accuracy of lesion detection in 3D CT images.
- File structure:
- ./data/DeepLesion - dataset folder
- ./exp - Experiment configs and the output files
- ./imagenet_models - pretrained imagenet weights (download)
- ./rcnn - core codes
- Data preprocessing - Refer to the original 3DCE repo:
- Load data split and annotations from DL_info.csv (see dataset/DeepLesion.py)
- Load images from 16-bit png files (see fio/load_ct_img.py)
- Linearly interpolate intermediate slices according to the slice interval
- Do intensity windowing
- Normalize pixel spacing
- Clip the black borders
- Attention setting - Attention settings can be changed in exp/$YOUR_EXP_NAME/config.yml:
- ATT_TEMP_SPATIAL: 3 #Spatial attention temperature, if -1: No spatial attention
- ATT_TEMP_VERTICAL: 2 #Vertical(Contextual) attention temperature, if -1: No vertical(contextual) attention
- MXNet 1.4
- Python 2.7
- Before running, run "make" to compile binary files
- To train the universal lesion detector, download the DeepLesion dataset [3]
- Q. Tao, Z. Ge, J. Cai, J. Yin and S. See, "Improving Deep Lesion Detection Using 3D Contextual and Spatial Attention", MICCAI 2019 (arXiv)
- K. Yan, M. Bagheri, and R. M. Summers, “3D Context Enhanced Region-based Convolutional Neural Network for End-to-End Lesion Detection,” in MICCAI, 2018 (arXiv)
- The DeepLesion dataset. (download)