Skip to content

Commit

Permalink
Update putnam_2013_a5.thy
Browse files Browse the repository at this point in the history
  • Loading branch information
jxin31415 authored Jul 24, 2024
1 parent 90c40f3 commit be5607d
Showing 1 changed file with 14 additions and 11 deletions.
25 changes: 14 additions & 11 deletions isabelle/putnam_2013_a5.thy
Original file line number Diff line number Diff line change
@@ -1,21 +1,24 @@
theory putnam_2013_a5 imports Complex_Main
"HOL-Analysis.Finite_Cartesian_Product"
"HOL-Analysis.Lebesgue_Measure"
"HOL-Analysis.Cross3"
begin

(* uses (nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> real), (nat \<Rightarrow> (real^2)), and (nat \<Rightarrow> (real^3)) instead of limiting inputs to (Fin m) and ensuring inputs are strictly increasing *)
(* uses (nat nat nat real), (nat (real^2)), and (nat (real^3)) instead of limiting inputs to (Fin m) and ensuring inputs are strictly increasing *)
theorem putnam_2013_a5:
fixes m :: nat
and area2 :: "(real^2) \<Rightarrow> (real^2) \<Rightarrow> (real^2) \<Rightarrow> real"
and area3 :: "(real^3) \<Rightarrow> (real^3) \<Rightarrow> (real^3) \<Rightarrow> real"
and areadef2 :: "(nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> real) \<Rightarrow> bool"
and areadef3 :: "(nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> real) \<Rightarrow> bool"
assumes mge3: "m \<ge> 3"
and harea2: "\<forall>a b c::real^2. area2 a b c = emeasure lebesgue (convex hull {a, b, c})"
and harea3: "\<forall>a b c::real^3. area3 a b c = emeasure lebesgue (convex hull {a, b, c})"
and hareadef2: "\<forall>a::nat\<Rightarrow>nat\<Rightarrow>nat\<Rightarrow>real. areadef2 a = (\<forall>A::nat\<Rightarrow>(real^2). (\<Sum>i::nat\<in>{0..(m-1)}. \<Sum>j::nat\<in>{i<..(m-1)}. \<Sum>k::nat\<in>{j<..(m-1)}. (a i j k * area2 (A i) (A j) (A k))) \<ge> 0)"
and hareadef3: "\<forall>a::nat\<Rightarrow>nat\<Rightarrow>nat\<Rightarrow>real. areadef3 a = (\<forall>A::nat\<Rightarrow>(real^3). (\<Sum>i::nat\<in>{0..(m-1)}. \<Sum>j::nat\<in>{i<..(m-1)}. \<Sum>k::nat\<in>{j<..(m-1)}. (a i j k * area3 (A i) (A j) (A k))) \<ge> 0)"
shows "\<forall>a::nat\<Rightarrow>nat\<Rightarrow>nat\<Rightarrow>real. (areadef2 a \<longrightarrow> areadef3 a)"
and area2 :: "(real^2) ⇒ (real^2) ⇒ (real^2) ⇒ real"
and area3 :: "(real^3) ⇒ (real^3) ⇒ (real^3) ⇒ real"
and areadef2 :: "(nat ⇒ nat ⇒ nat ⇒ real) ⇒ bool"
and areadef3 :: "(nat ⇒ nat ⇒ nat ⇒ real) ⇒ bool"
and cross :: "(real^3) ⇒ (real^3) ⇒ (real^3) ⇒ (real^3)"
defines "cross ≡ λ a b c. sgn (cross3 (b - a) (c - a))"
assumes mge3: "m ≥ 3"
and harea2: "∀a b c::real^2. area2 a b c = emeasure lebesgue (convex hull {a, b, c})"
and harea3: "∀a b c::real^3. area3 a b c = emeasure lebesgue (convex hull {a, b, c, a + (cross a b c), b + (cross a b c), c + (cross a b c)})"
and hareadef2: "∀a::nat⇒nat⇒nat⇒real. areadef2 a = (∀A::nat⇒(real^2). (∑i::nat∈{0..(m-1)}. ∑j::nat∈{i<..(m-1)}. ∑k::nat∈{j<..(m-1)}. (a i j k * area2 (A i) (A j) (A k))) ≥ 0)"
and hareadef3: "∀a::nat⇒nat⇒nat⇒real. areadef3 a = (∀A::nat⇒(real^3). (∑i::nat∈{0..(m-1)}. ∑j::nat∈{i<..(m-1)}. ∑k::nat∈{j<..(m-1)}. (a i j k * area3 (A i) (A j) (A k))) ≥ 0)"
shows "∀a::nat⇒nat⇒nat⇒real. (areadef2 a ⟶ areadef3 a)"
sorry

end

0 comments on commit be5607d

Please sign in to comment.