Skip to content

Commit

Permalink
Coq revisions 2006-2011
Browse files Browse the repository at this point in the history
  • Loading branch information
JohnEdwardJennings committed Jul 24, 2024
1 parent 86c74fa commit 5cfa1e7
Show file tree
Hide file tree
Showing 32 changed files with 85 additions and 88 deletions.
15 changes: 10 additions & 5 deletions coq/src/putnam_2006_a5.v
Original file line number Diff line number Diff line change
@@ -1,11 +1,16 @@
Require Import Nat Reals Coquelicot.Coquelicot.
Definition putnam_2006_a5_solution (n: nat) := if eqb (n mod 4) (1%nat) then (INR n) else (-1 * INR n).
Definition putnam_2006_a5_solution (n: nat) := if eqb (n mod 4) (1%nat) then (Z.of_nat n) else (-1 * Z.of_nat n)%Z.
Theorem putnam_2006_a5
(prodn := fix prod_n (m: nat -> R) (n : nat) : R :=
match n with
| O => m 0%nat
| S n' => m n' * prod_n m n'
| O => 1
| S n' => m (S n') * prod_n m n'
end)
: forall (n: nat) (th: R), odd n = true /\ ~ exists (p q: Z), th / PI = IZR (p / q) /\
let a (k: nat) := tan (th + INR k * PI / INR n) in sum_n a n / prodn a n = putnam_2006_a5_solution n.
(n : nat)
(th : R)
(a : nat -> R)
(nodd : odd n = true)
(thetairr : ~ exists (p q: Z), th / PI = IZR (p / q))
(ha : forall k, a k = tan (th + (INR k * PI) / INR n))
: sum_n_m a 1 n / prodn a n = IZR (putnam_2006_a5_solution n).
Proof. Admitted.
2 changes: 1 addition & 1 deletion coq/src/putnam_2006_b2.v
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,6 @@ Theorem putnam_2006_b2
(X : list R)
(hXcard : length X = n)
: exists (presS: R -> Prop) (m: Z) (S: list R),
(neq (length S) 0) /\ (forall (x: R), In x S <-> (In x X /\ presS x)) /\
(neq (length S) 0) /\ NoDup S /\ (forall (x: R), In x S <-> (In x X /\ presS x)) /\
(Rabs (IZR m + (fold_left Rplus S 0)) <= 1 / INR (n + 1)).
Proof. Admitted.
4 changes: 2 additions & 2 deletions coq/src/putnam_2006_b5.v
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@ Theorem putnam_2006_b5
(I : (R -> R) -> R := fun f => RInt (fun x => x ^ 2 * f x) 0 1)
(J : (R -> R) -> R := fun f => RInt (fun x => x * (f x) ^ 2) 0 1)
(m: R)
(hm : exists (f: R -> R) (x: R), 0 <= x <= 1 /\ continuity_pt f x /\ m = I f - J f)
(hmub : forall (f: R -> R) (x: R), 0 <= x <= 1 /\ continuity_pt f x /\ m >= I f - J f)
(hm : exists (f: R -> R), (forall (x: R), 0 <= x <= 1 -> continuity_pt f x) /\ m = I f - J f)
(hmub : forall (f: R -> R), (forall (x: R), 0 <= x <= 1 -> continuity_pt f x) -> m >= I f - J f)
: m = putnam_2006_b5_solution.
Proof. Admitted.
2 changes: 1 addition & 1 deletion coq/src/putnam_2006_b6.v
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ Theorem putnam_2006_b6
(A := fix a (n: nat) : R :=
match n with
| O => a0
| S n' => a n' + 1 / (a n') ^ (1 / k)
| S n' => a n' + Rpower (1 / (a n')) (1 / INR k)
end)
: Lim_seq (fun n => (A n) ^ (k + 1) / INR n ^ k) = putnam_2006_b6_solution k.
Proof. Admitted.
6 changes: 3 additions & 3 deletions coq/src/putnam_2007_a4.v
Original file line number Diff line number Diff line change
@@ -1,9 +1,9 @@
Require Import Reals Zpower Coquelicot.Coquelicot.
Definition putnam_2007_a4_solution (f: R -> R) := exists (c d: Z), Z.ge d 0 /\ Z.ge c (1 - d) /\ f = (fun n => (IZR (Zpower 10 c) * IZR (Zpower (9 * floor n + 1) d) - 1) / 9).
Definition putnam_2007_a4_solution (f: R -> R) := exists (c d: Z), Z.ge d 0 /\ Z.ge c (1 - d) /\ f = (fun n => (Rpower 10 (IZR c) * Rpower (9 * n + 1) (IZR d) - 1) / 9).
Theorem putnam_2007_a4
(repunit : R -> Prop := fun n => n = IZR (floor n) /\ n > 0 /\ exists (m: nat), n = sum_n (fun i => 10 ^ i) m)
(c: nat -> R)
(n: nat)
(f : R -> R := fun x => sum_n (fun i => c i * x ^ i) (n + 1))
: repunit (INR n) -> repunit (f (INR n)) <-> putnam_2007_a4_solution f.
(f : R -> R := fun x => sum_n (fun i => c i * x ^ i) n)
: (forall (n: nat), repunit (INR n) -> repunit (f (INR n))) <-> putnam_2007_a4_solution f.
Proof. Admitted.
3 changes: 2 additions & 1 deletion coq/src/putnam_2007_b1.v
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,8 @@ Theorem putnam_2007_b1
(c: nat -> nat)
(n: nat)
(hn : gt n 0)
(f : nat -> R := fun x => sum_n (fun i => INR (mul (c i) (x ^ i))) (n + 1))
(k: nat)
(f : nat -> R := fun x => sum_n (fun i => INR (mul (c i) (x ^ i))) (k + 1))
: forall (x: nat), gt (c x) 0 ->
Z.to_nat (floor (f n)) %| Z.to_nat (floor (f (Z.to_nat (floor (f n + 1))))) = true <-> n = 1%nat.
Proof. Admitted.
7 changes: 4 additions & 3 deletions coq/src/putnam_2007_b2.v
Original file line number Diff line number Diff line change
@@ -1,8 +1,9 @@
Require Import Reals Coquelicot.Coquelicot.
Theorem putnam_2007_b2
(f: R -> R)
(hf : forall (x: R), 0 <= x <= 1 /\ continuity_pt f x /\ ex_derive f x /\ RInt f 0 1 = 0)
(hf : (forall (x: R), 0 <= x <= 1 -> ex_derive f x /\ continuity_pt (Derive f) x) /\ RInt f 0 1 = 0)
(max_f_prime_abs: R)
: (forall (x: R), 0 <= x <= 1 -> max_f_prime_abs >= Rabs (Derive f x)) /\ (exists (x: R), 0 <= x <= 1 -> max_f_prime_abs = Rabs (Derive f x)) /\
forall (a: R), 0 < a < 1 -> Rabs (RInt f 0 a) = max_f_prime_abs / 8.
(heqmax: exists (x: R), 0 <= x <= 1 -> max_f_prime_abs = Rabs (Derive f x))
(hmaxub: forall (x: R), 0 <= x <= 1 -> max_f_prime_abs >= Rabs (Derive f x))
: forall (a: R), 0 < a < 1 -> Rabs (RInt f 0 a) <= max_f_prime_abs / 8.
Proof. Admitted.
4 changes: 2 additions & 2 deletions coq/src/putnam_2007_b3.v
Original file line number Diff line number Diff line change
@@ -1,10 +1,10 @@
Require Import Reals Coquelicot.Coquelicot.
Definition putnam_2007_b3_solution := let a := (1 + sqrt 5) / 2 in 2 ^ 2006 / sqrt 5 * (a ^ 3997 - Rpower a (-3997)).
Definition putnam_2007_b3_solution := let a := (1 + sqrt 5) / 2 in (2 ^ 2006 / sqrt 5) * (a ^ 3997 - Rpower a (-3997)).
Theorem putnam_2007_b3
(X := fix x (n: nat) :=
match n with
| O => 1
| S n' => 3 * x n' + IZR (floor (x n' * sqrt (INR n)))
| S n' => 3 * x n' + IZR (floor (x n' * sqrt 5))
end)
: X 2007%nat = putnam_2007_b3_solution.
Proof. Admitted.
3 changes: 1 addition & 2 deletions coq/src/putnam_2008_a1.v
Original file line number Diff line number Diff line change
@@ -1,7 +1,6 @@
Require Import Reals Coquelicot.Coquelicot.
Theorem putnam_2008_a1
(f : R -> R -> R)
(x y z: R)
(hf : f x y + f y z + f z x = 0)
(hf : forall (x y z: R), f x y + f y z + f z x = 0)
: exists (g: R -> R), forall (x y: R), f x y = g x - g y.
Proof. Admitted.
2 changes: 1 addition & 1 deletion coq/src/putnam_2008_a4.v
Original file line number Diff line number Diff line change
Expand Up @@ -3,5 +3,5 @@ Definition putnam_2008_a4_solution := False.
Theorem putnam_2008_a4
(f : R -> R)
(hf : forall (x : R), f x = (if (Rle_dec x (exp 1)) then x else x * f (ln x)))
: ex_lim_seq (fun nInc => sum_n (fun n => 1 / f (INR n)) nInc) <-> putnam_2008_a4_solution.
: ex_lim_seq (fun nInc => sum_n_m (fun n => 1 / f (INR n)) 1 nInc) <-> putnam_2008_a4_solution.
Proof. Admitted.
8 changes: 4 additions & 4 deletions coq/src/putnam_2008_b4.v
Original file line number Diff line number Diff line change
@@ -1,10 +1,10 @@
Require Import Nat Reals Coquelicot.Coquelicot.
Require Import Nat ZArith Reals Coquelicot.Coquelicot.
Theorem putnam_2008_b4
(p: nat)
(hp : Znumtheory.prime (Z.of_nat p))
(c: nat -> Z)
(n: nat)
(h : nat -> nat := fun x => Z.to_nat (floor (sum_n (fun i => IZR (c i) * INR (x ^ i)) (n + 1))))
: (forall (i j: nat), i <> j /\ and (le 0 i) (le i (p ^ 2 - 1)) /\ and (le 0 j) (le j (p ^ 2 - 1)) -> (h i) mod (p ^ 2) <> h j mod p ^ 2) ->
(forall (i j: nat), i <> j /\ and (le 0 i) (le i (p ^ 3 - 1)) /\ and (le 0 j) (le j (p ^ 3 - 1)) -> h i mod p ^ 2 <> h j mod p ^ 3).
(h : nat -> Z := fun x => floor (sum_n (fun i => IZR (c i) * INR (x ^ i)) n))
(hh : forall (i j: nat), i <> j /\ and (le 0 i) (le i (p ^ 2 - 1)) /\ and (le 0 j) (le j (p ^ 2 - 1)) -> Z.modulo (h i) (Z.of_nat (p ^ 2)) <> Z.modulo (h j) (Z.of_nat (p ^ 2)))
: (forall (i j: nat), i <> j /\ and (le 0 i) (le i (p ^ 3 - 1)) /\ and (le 0 j) (le j (p ^ 3 - 1)) -> Z.modulo (h i) (Z.of_nat (p ^ 3)) <> Z.modulo (h j) (Z.of_nat (p ^ 3))).
Proof. Admitted.
8 changes: 4 additions & 4 deletions coq/src/putnam_2008_b5.v
Original file line number Diff line number Diff line change
@@ -1,8 +1,8 @@
Require Import Reals Coquelicot.Coquelicot. From mathcomp Require Import div.
Require Import Reals QArith Coquelicot.Coquelicot. From mathcomp Require Import div.
Open Scope R.
Definition putnam_2008_b5_solution (f : R -> R) := exists n : Z, f = (fun x => x + IZR n) /\ f = (fun x => -x + IZR n).
Definition putnam_2008_b5_solution (f : R -> R) := exists n : Z, f = (fun x => x + IZR n) \/ f = (fun x => -x + IZR n).
Theorem putnam_2008_b5
(f: R -> R)
(hf : continuity f)
: forall (x: R), ex_derive f x -> forall (q: R), exists (n1 n2 d: nat), q = INR (n1 / d) /\ f q = INR (n2 / d) /\ coprime n1 d = true /\ coprime n2 d = true <-> putnam_2008_b5_solution f.
(hf : (forall x: R, ex_derive f x) /\ continuity (Derive f))
: (forall (q: Q), exists (n1 n2 d: nat), Q2R q = INR n1 / INR d /\ f (Q2R q) = INR n2 / INR d /\ coprime n1 d = true /\ coprime n2 d = true) <-> putnam_2008_b5_solution f.
Proof. Admitted.
5 changes: 2 additions & 3 deletions coq/src/putnam_2008_b6.v
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,5 @@ Theorem putnam_2008_b6
(hk : k > 0)
(klimited : {perm 'I_n} -> Prop := fun sigma => forall (i: 'I_n), Rle (Rabs (INR (nat_of_ord (sigma i)) - INR i)) (INR k))
(E : Ensemble {perm 'I_n} := fun p => klimited p)
: exists (sz: nat), cardinal {perm 'I_n} E sz /\ Nat.odd sz <-> n mod (2 * k + 1) = 0 \/ n mod (2 * k + 1) = 1.
Proof. Admitted.
End putnam_2008_b6.
: (exists (sz: nat), cardinal {perm 'I_n} E sz /\ Nat.odd sz) <-> n mod (2 * k + 1) = 0 \/ n mod (2 * k + 1) = 1.
Proof. Admitted.
4 changes: 2 additions & 2 deletions coq/src/putnam_2009_a1.v
Original file line number Diff line number Diff line change
Expand Up @@ -3,8 +3,8 @@ Context `{T2D:Tarski_2D} `{TE:@Tarski_euclidean Tn TnEQD}.
Open Scope R.
Definition putnam_2009_a1_solution := True.
Theorem putnam_2009_a1
(f: Tpoint -> R)
: ((forall (A B C D: Tpoint), Square A B C D ->
: (forall f: Tpoint -> R,
(forall (A B C D: Tpoint), Square A B C D ->
f A + f B + f C + f D = 0) ->
forall (P : Tpoint), f P = 0) <->
putnam_2009_a1_solution.
Expand Down
15 changes: 7 additions & 8 deletions coq/src/putnam_2009_a2.v
Original file line number Diff line number Diff line change
@@ -1,13 +1,12 @@
Require Import Reals Coquelicot.Coquelicot.
Definition putnam_2009_a2_solution : (R -> R) := fun x => Rpower 2 (-1 / 12) * (sin (6 * x + PI / 4) / (cos (6 * x + PI / 4)) ^ 2) ^ (1 / 6).
Definition putnam_2009_a2_solution : (R -> R) := fun x => Rpower 2 (-1 / 12) * Rpower (sin (6 * x + PI / 4) / (cos (6 * x + PI / 4)) ^ 2) (1 / 6).
Theorem putnam_2009_a2
(f g h: R -> R)
(a b: R)
(hab : a < b)
: forall (x: R), a < x < b ->
(ex_derive f x /\ ex_derive g x /\ ex_derive h x /\
Derive f x = 2 * f (f (g (h x))) + 1 / g (h x) /\ f 0 = 1 /\
Derive g x = 2 * f (g (g (h x))) + 4 / f (h x) /\ g 0 = 1 /\
Derive h x = 3 * f (g (h (h x))) + 1 / f (g x) /\ h 0 = 1) ->
f = putnam_2009_a2_solution.
(hab : a < 0 < b)
(hdiff : forall (x: R), a < x < b -> ex_derive f x /\ ex_derive g x /\ ex_derive h x)
(hf : forall (x: R), a < x < b -> Derive f x = 2 * (f x)^2 * (g x) * (h x) + 1 / ((g x) * (h x)) /\ f 0 = 1)
(hg : forall (x: R), a < x < b -> Derive g x = (f x) * (g x)^2 * (h x) + 4 / ((f x) * (h x)) /\ g 0 = 1)
(hh : forall (x: R), a < x < b -> Derive h x = 3 * (f x) * (g x) * (h x)^2 + 1 / ((f x) * (g x)) /\ h 0 = 1)
: exists (c d: R), c < 0 < d /\ (forall (x: R), c < x < d -> f x = putnam_2009_a2_solution x).
Proof. Admitted.
4 changes: 1 addition & 3 deletions coq/src/putnam_2009_a4.v
Original file line number Diff line number Diff line change
@@ -1,7 +1,5 @@
Require Import Ensembles QArith.
Definition putnam_2009_a4_solution := False.
Theorem putnam_2009_a4
(E: Ensemble Q)
(hE : E 0 /\ forall (q: Q), (E q -> E (q + 1) /\ E (q - 1)) /\ (E q /\ q <> 0 /\ q <> 1 -> E (1 / (q * (q - 1)))))
: forall (q: Q), E q <-> putnam_2009_a4_solution.
: (forall (E: Ensemble Q), (E 0 /\ forall (q: Q), (E q -> E (q + 1) /\ E (q - 1)) /\ (E q /\ q <> 0 /\ q <> 1 -> E (1 / (q * (q - 1))))) -> forall (q: Q), E q) <-> putnam_2009_a4_solution.
Proof. Admitted.
4 changes: 2 additions & 2 deletions coq/src/putnam_2009_b5.v
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
Require Import Reals Coquelicot.Coquelicot.
Theorem putnam_2009_b5
(f: R -> R)
(hf : R -> Prop := fun x => (1 < x /\ ex_derive f x /\ Derive f x = (x ^ 2 - (f x) ^ 2) / (x ^ 2 * ((f x) ^ 2 + 1))))
: ~ ex_lim_seq (fun n => f (INR n)).
(hf : forall (x: R), 1 < x -> (ex_derive f x /\ Derive f x = (x ^ 2 - (f x) ^ 2) / (x ^ 2 * ((f x) ^ 2 + 1))))
: is_lim f p_infty p_infty.
Proof. Admitted.
4 changes: 2 additions & 2 deletions coq/src/putnam_2009_b6.v
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
Require Import List ZArith Coquelicot.Coquelicot.
Open Scope Z.
Theorem putnam_2009_b6
: forall (n: Z), n > 0 -> exists (a: list Z), length a = 2009%nat /\ nth 0 a 0 = 0 /\ nth 2008 a 0 = n /\
forall (i: nat), and (le 1 i) (lt i 2009) -> exists (j: nat), and (le 0 j) (lt j i) /\ ((exists (k: Z), k > 0 /\ nth i a 0 = nth j a 0 + 2 ^ k) \/ exists (b c: Z), b > 0 /\ c > 0 /\ nth i a 0 = b mod c).
: forall (n: Z), n > 0 -> exists (a: list Z), length a = 2010%nat /\ nth 0 a 0 = 0 /\ nth 2009 a 0 = n /\
forall (i: nat), and (le 1 i) (le i 2009) -> (exists (j: nat), lt j i /\ (exists (k: Z), k >= 0 /\ nth i a 0 = nth j a 0 + 2 ^ k)) \/ exists (b c: nat), lt b i /\ lt c i /\ nth b a 0 > 0 /\ nth c a 0 > 0 /\ nth i a 0 = (nth b a 0) mod (nth c a 0).
Proof. Admitted.
2 changes: 1 addition & 1 deletion coq/src/putnam_2010_a2.v
Original file line number Diff line number Diff line change
Expand Up @@ -2,5 +2,5 @@ Require Import Reals Coquelicot.Coquelicot.
Definition putnam_2010_a2_solution (f: R -> R) := exists (c d: R), f = (fun x => c * x + d).
Theorem putnam_2010_a2
(f: R -> R)
: forall (x: R) (n: nat), Derive f x = (f (x + (INR n)) - f x) / (INR n) <-> putnam_2010_a2_solution f.
: (forall (x: R) (n: nat), gt n 0 -> ex_derive f x /\ Derive f x = (f (x + (INR n)) - f x) / (INR n)) <-> putnam_2010_a2_solution f.
Proof. Admitted.
5 changes: 2 additions & 3 deletions coq/src/putnam_2010_a6.v
Original file line number Diff line number Diff line change
@@ -1,7 +1,6 @@
Require Import Reals Coquelicot.Coquelicot.
Theorem putnam_2010_a6
(f: R -> R)
(x y: R)
(hf : x >= 0 /\ x < y -> f x > f y /\ continuity_pt f x /\ Lim_seq (fun n => f (INR n)) = 0)
: ~ ex_lim_seq (fun nInc => RInt (fun x => (f x - f (x + 1)) / f x) 0 (INR nInc)).
(hf : (forall (x: R), x >= 0 -> (forall (y: R), x < y -> f x > f y) /\ continuity_pt f x) /\ is_lim f p_infty 0)
: ~ ex_finite_lim (fun nInc => RInt (fun x => (f x - f (x + 1)) / f x) 0 nInc) p_infty.
Proof. Admitted.
2 changes: 1 addition & 1 deletion coq/src/putnam_2010_b1.v
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
Require Import Reals Coquelicot.Coquelicot.
Definition putnam_2010_b1_solution := False.
Theorem putnam_2010_b1
: exists (a: nat -> R), forall (m: nat), gt m 0 -> Series (fun i => (a i) ^ m) = (INR m) <-> putnam_2010_b1_solution.
: (exists (a: nat -> R), forall (m: nat), gt m 0 -> Series (fun i => (a i) ^ m) = (INR m)) <-> putnam_2010_b1_solution.
Proof. Admitted.
24 changes: 12 additions & 12 deletions coq/src/putnam_2010_b2.v
Original file line number Diff line number Diff line change
@@ -1,16 +1,16 @@
Require Import Reals Rgeom ZArith GeoCoq.Main.Tarski_dev.Ch16_coordinates_with_functions.
Context `{T2D:Tarski_2D} `{TE:@Tarski_euclidean Tn TnEQD}.
Require Import Reals Rgeom ZArith.
Open Scope R.
Definition putnam_2010_b2_solution := 3.
Theorem putnam_2010_b2
(pt_to_R : Tpoint -> (R * R))
(int_val : Tpoint -> Prop := fun P => exists (x y : Z), pt_to_R P = (IZR x, IZR y))
(dist : Tpoint -> Tpoint -> R := fun A B => let (a, b) := pt_to_R A in let (c, d) := pt_to_R B in dist_euc a b c d)
(p : Tpoint -> Tpoint -> Tpoint -> Prop :=
fun A B C => ~ Col A B C /\ int_val A /\ int_val B /\ int_val C /\
exists (z: Z), dist A B = IZR z /\ dist A C = IZR z /\ dist B C = IZR z)
(m : Z)
(hm : exists (A B C: Tpoint), p A B C)
(hmlb : forall (A B C: Tpoint), p A B C -> dist A B >= IZR m)
: IZR m = putnam_2010_b2_solution.
(dist : (R * R) -> (R * R) -> R := fun A B => let (a, b) := A in let (c, d) := B in dist_euc a b c d)
(int_val : (R * R) -> Prop := fun P => exists (x y : Z), P = (IZR x, IZR y))
(noncollinear: (R * R) -> (R * R) -> (R * R) -> Prop := fun A B C => let (a, b) := A in let (c, d) := B in let (e, f) := C in
~exists (s t : R), (s * (c - a) + t * (e - a), s * (d - b) + t * (f - b)) = (0, 0))
(p : (R * R) -> (R * R) -> (R * R) -> Prop :=
fun A B C => noncollinear A B C /\ int_val A /\ int_val B /\ int_val C /\
(exists (x : Z), dist A B = IZR x) /\ (exists (y : Z), dist A C = IZR y) /\ (exists (z : Z), dist B C = IZR z))
(m : R)
(hm : exists (A B C: R * R), p A B C /\ dist A B = m)
(hmlb : forall (A B C: R * R), p A B C -> dist A B >= m)
: m = putnam_2010_b2_solution.
Proof. Admitted.
6 changes: 3 additions & 3 deletions coq/src/putnam_2010_b4.v
Original file line number Diff line number Diff line change
@@ -1,8 +1,8 @@
Require Import Reals Coquelicot.Coquelicot.
Definition putnam_2010_b4_solution (c1 c2: nat -> R) (n m: nat) := exists (a b c d: R), b * c - a * d = 1 /\ n = 1%nat /\ m = 1%nat /\ c1 = (fun x => match x with | O => b | S O => a | _ => 0 end) /\ c2 = (fun x => match x with | O => d | S O => c | _ => 0 end).
Definition P : (nat -> R) -> nat -> R -> R := fun c n x => sum_n (fun i => c i * x ^ i) n.
Definition putnam_2010_b4_solution (c1 c2: nat -> R) (n m: nat) := exists (a b c d: R), b * c - a * d = 1 /\ P c1 n = (fun x => a * x + b) /\ P c2 m = (fun x => c * x + d).
Theorem putnam_2010_b4
(P : (nat -> R) -> nat -> R -> R := fun c n x => sum_n (fun i => c i * x ^ i) (n + 1))
(c1 c2: nat -> R)
(n m: nat)
: forall (x: R), (P c1 n x) * (P c2 m (x + 1)) - (P c1 n (x + 1)) * (P c2 m x) = 1 <-> putnam_2010_b4_solution c1 c2 n m.
: (forall (x: R), (P c1 n x) * (P c2 m (x + 1)) - (P c1 n (x + 1)) * (P c2 m x) = 1) <-> putnam_2010_b4_solution c1 c2 n m.
Proof. Admitted.
2 changes: 1 addition & 1 deletion coq/src/putnam_2010_b5.v
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
Require Import Reals Coquelicot.Coquelicot.
Definition putnam_2010_b5_solution := False.
Theorem putnam_2010_b5
: exists (f: R -> R), forall (x y: R), x < y -> f x < f y /\ Derive f x = f (f x) <-> putnam_2010_b5_solution.
: (exists (f: R -> R), forall (x y: R), (x < y -> f x < f y) /\ ex_derive f x /\ Derive f x = f (f x)) <-> putnam_2010_b5_solution.
Proof. Admitted.
7 changes: 4 additions & 3 deletions coq/src/putnam_2011_a2.v
Original file line number Diff line number Diff line change
Expand Up @@ -4,14 +4,15 @@ Theorem putnam_2011_a2
(prodn := fix prod_n (m: nat -> R) (n : nat) : R :=
match n with
| O => m 0%nat
| S n' => m n' * prod_n m n'
| S n' => m n * prod_n m n'
end)
(a: nat -> R)
(ha1 : a 0%nat = 1)
(B := fix b (n: nat) :=
match n with
| O => 1
| S n' => b n' * a n - 2
end)
(M: nat)
: (forall (n: nat), a n > 0 /\ B n > 0 /\ -1 * INR M <= B n <= INR M) -> Series (fun n => prodn a n) = putnam_2011_a2_solution.
(M: R)
: (forall (n: nat), a n > 0 /\ B n > 0 /\ -1 * M <= B n <= M) -> Series (fun n => 1 / prodn a n) = putnam_2011_a2_solution.
Proof. Admitted.
5 changes: 2 additions & 3 deletions coq/src/putnam_2011_a3.v
Original file line number Diff line number Diff line change
@@ -1,7 +1,6 @@
Require Import Reals Coquelicot.Coquelicot.
(* Note: There may be multiple possible correct answers. *)
Definition putnam_2011_a3_solution := (-1, 2 / PI).
Theorem putnam_2011_a3
(c L: R)
(hL : L > 0)
: Lim_seq (fun r => (Rpower (INR r) c * RInt (fun x => x ^ r * sin x) 0 PI / 2) / (RInt (fun x => x ^ r * cos x) 0 PI / 2)) = L <-> (c, L) = putnam_2011_a3_solution.
: let (c, L) := putnam_2011_a3_solution in L > 0 /\ is_lim_seq (fun r => (Rpower (INR r) c * RInt (fun x => x ^ r * sin x) 0 (PI / 2)) / (RInt (fun x => x ^ r * cos x) 0 (PI / 2))) L.
Proof. Admitted.
2 changes: 1 addition & 1 deletion coq/src/putnam_2011_b1.v
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
Require Import Reals ZArith Coquelicot.Coquelicot.
Theorem putnam_2011_b1
: forall (h k: Z), Z.gt h 0 /\ Z.gt k 0 -> forall (ep: R), ep > 0 /\ exists (m n: Z), ep < Rabs (IZR h * sqrt (IZR m) - IZR k * sqrt (IZR n)) < 2 * ep.
: forall (h k: Z), Z.gt h 0 /\ Z.gt k 0 -> forall (ep: R), ep > 0 -> exists (m n: Z), Z.gt m 0 /\ Z.gt n 0 /\ ep < Rabs (IZR h * sqrt (IZR m) - IZR k * sqrt (IZR n)) < 2 * ep.
Proof. Admitted.
4 changes: 1 addition & 3 deletions coq/src/putnam_2011_b3.v
Original file line number Diff line number Diff line change
@@ -1,7 +1,5 @@
Require Import Reals Coquelicot.Coquelicot.
Definition putnam_2011_b3_solution := True.
Theorem putnam_2011_b3
(f g : R -> R)
(hfg : forall (a b : R), (a < 0 < b /\ forall (x: R), a < x < b -> g x > 0 /\ continuity_pt g 0 /\ ex_derive f (g 0) /\ ex_derive (fun x => f x / g x) 0))
: ex_derive f 0 <-> putnam_2011_b3_solution.
: (forall (f g : R -> R), g 0 <> 0 /\ continuity_pt g 0 /\ ex_derive (fun x : R => f x * g x) 0 /\ ex_derive (fun x : R => f x / g x) 0 -> ex_derive f 0) <-> putnam_2011_b3_solution.
Proof. Admitted.
4 changes: 2 additions & 2 deletions coq/src/putnam_2011_b5.v
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
Require Import Reals Coquelicot.Coquelicot.
Theorem putnam_2011_b5
(a: nat -> R)
(ha : exists (A: R), forall (n: nat), Lim_seq (fun nInc => (RInt (fun x => (sum_n (fun i => 1 / (1 + (x - a i) ^ 2)) n)) (-1 * INR nInc) (INR nInc)) ^ 2) <= A * INR n)
: exists (B: R), B > 0 /\ forall (n: nat), sum_n (fun i => (sum_n (fun j => 1 + (a i - a j) ^ 2)) n) n >= B * INR n ^ 3.
(ha : exists (A: R), forall (n: nat), exists (L : R), is_lim_seq (fun nInc => (RInt (fun x => (sum_n_m (fun i => 1 / (1 + (x - a i) ^ 2)) 1 n) ^ 2) (-1 * INR nInc) (INR nInc))) L /\ L <= A * INR n)
: exists (B: R), B > 0 /\ forall (n: nat), sum_n_m (fun i => (sum_n_m (fun j => 1 + (a i - a j) ^ 2)) 1 n) 1 n >= B * INR n ^ 3.
Proof. Admitted.
6 changes: 2 additions & 4 deletions coq/src/putnam_2011_b6.v
Original file line number Diff line number Diff line change
Expand Up @@ -3,8 +3,6 @@ Open Scope nat_scope.
Theorem putnam_2011_b6
(p: nat)
(hp : prime (Z.of_nat p) /\ odd p = true)
(l := seq 0 p)
(E: Ensemble nat)
: (forall (n: nat), E n -> and (le 0 n) (lt n p)) /\ cardinal nat E ((p + 1) / 2) /\
forall (n: nat), E n -> Z.to_nat (floor (sum_n (fun k => INR (fact k * n ^ k)) p)) mod p <> 0.
: exists (E: Ensemble nat), (forall (n: nat), E n -> lt n p) /\ cardinal nat E ((p + 1) / 2) /\
forall (n: nat), E n -> Z.to_nat (floor (sum_n (fun k => INR (fact k * n ^ k)) (p - 1))) mod p <> 0.
Proof. Admitted.
Loading

0 comments on commit 5cfa1e7

Please sign in to comment.