Skip to content

Commit

Permalink
Fixed Euclidean dist issues w.t.t. Eric Wieser for his suggestion
Browse files Browse the repository at this point in the history
  • Loading branch information
GeorgeTsoukalas committed Aug 1, 2024
1 parent 7fd48ea commit 14b744d
Show file tree
Hide file tree
Showing 41 changed files with 140 additions and 144 deletions.
8 changes: 4 additions & 4 deletions lean4/src/putnam_1962_a3.lean
Original file line number Diff line number Diff line change
Expand Up @@ -4,13 +4,13 @@ open BigOperators
open MeasureTheory

theorem putnam_1962_a3
(A B C A' B' C' P Q R : Fin 2 → ℝ)
(A B C A' B' C' P Q R : EuclideanSpace ℝ (Fin 2))
(k : ℝ)
(hk : k > 0)
(hABC : ¬Collinear ℝ {A, B, C})
(hA' : A' ∈ segment ℝ B C ∧ Euclidean.dist C A' / Euclidean.dist A' B = k)
(hB' : B' ∈ segment ℝ C A ∧ Euclidean.dist A B' / Euclidean.dist B' C = k)
(hC' : C' ∈ segment ℝ A B ∧ Euclidean.dist B C' / Euclidean.dist C' A = k)
(hA' : A' ∈ segment ℝ B C ∧ dist C A' / dist A' B = k)
(hB' : B' ∈ segment ℝ C A ∧ dist A B' / dist B' C = k)
(hC' : C' ∈ segment ℝ A B ∧ dist B C' / dist C' A = k)
(hP : P ∈ segment ℝ B B' ∧ P ∈ segment ℝ C C')
(hQ : Q ∈ segment ℝ C C' ∧ Q ∈ segment ℝ A A')
(hR : R ∈ segment ℝ A A' ∧ R ∈ segment ℝ B B')
Expand Down
8 changes: 4 additions & 4 deletions lean4/src/putnam_1963_a6.lean
Original file line number Diff line number Diff line change
Expand Up @@ -4,11 +4,11 @@ open BigOperators
open Topology Filter

theorem putnam_1963_a6
(F1 F2 U V A B C D P Q : Fin 2 → ℝ)
(F1 F2 U V A B C D P Q : EuclideanSpace ℝ (Fin 2))
(r : ℝ)
(E : Set (Fin 2 → ℝ) := {H : Fin 2 → ℝ | Euclidean.dist F1 H + Euclidean.dist F2 H = r})
(M : Fin 2 → ℝ := midpoint ℝ U V)
(hr : r > Euclidean.dist F1 F2)
(E : Set (Fin 2 → ℝ) := {H : EuclideanSpace ℝ (Fin 2) | dist F1 H + dist F2 H = r})
(M : EuclideanSpace ℝ (Fin 2) := midpoint ℝ U V)
(hr : r > dist F1 F2)
(hUV : U ∈ E ∧ V ∈ E ∧ U ≠ V)
(hAB : A ∈ E ∧ B ∈ E ∧ A ≠ B)
(hCD : C ∈ E ∧ D ∈ E ∧ C ≠ D)
Expand Down
4 changes: 2 additions & 2 deletions lean4/src/putnam_1964_a1.lean
Original file line number Diff line number Diff line change
Expand Up @@ -2,8 +2,8 @@ import Mathlib
open BigOperators

theorem putnam_1964_a1
(A : Finset (Fin 2 → ℝ))
(A : Finset (EuclideanSpace ℝ (Fin 2)))
(hAcard : A.card = 6)
(dists : Set ℝ := {d : ℝ | ∃ a b : Fin 2 → ℝ, a ∈ A ∧ b ∈ A ∧ a ≠ b ∧ d = Euclidean.dist a b})
(dists : Set ℝ := {d : ℝ | ∃ a b : EuclideanSpace ℝ (Fin 2), a ∈ A ∧ b ∈ A ∧ a ≠ b ∧ d = dist a b})
: (sSup dists / sInf dists ≥ Real.sqrt 3) :=
sorry
4 changes: 2 additions & 2 deletions lean4/src/putnam_1964_b6.lean
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ open BigOperators
open Set Function Filter Topology

theorem putnam_1964_b6
(D : Set (Fin 2 → ℝ) := {v : Fin 2 → ℝ | Euclidean.dist 0 v ≤ 1})
(cong : Set (Fin 2 → ℝ) → Set (Fin 2 → ℝ)Prop := fun A B ↦ ∃ f : (Fin 2ℝ) → (Fin 2 → ℝ), B = f '' A ∧ ∀ v w : Fin 2 → ℝ, Euclidean.dist v w = Euclidean.dist (f v) (f w))
(D : Set (EuclideanSpace ℝ (Fin 2)) := {v : EuclideanSpace ℝ (Fin 2) | dist 0 v ≤ 1})
(cong : Set (EuclideanSpace ℝ (Fin 2)) → Set (EuclideanSpace ℝ (Fin 2))Prop := fun A B ↦ ∃ f : (EuclideanSpace ℝ (Fin 2))(EuclideanSpace ℝ (Fin 2)), B = f '' A ∧ ∀ v w : EuclideanSpace ℝ (Fin 2), dist v w = dist (f v) (f w))
: (¬∃ A B : Set (Fin 2 → ℝ), cong A B ∧ A ∩ B = ∅ ∧ A ∪ B = D) :=
sorry
5 changes: 2 additions & 3 deletions lean4/src/putnam_1965_a1.lean
Original file line number Diff line number Diff line change
Expand Up @@ -3,15 +3,14 @@ open BigOperators

open EuclideanGeometry

--TODO: (George) Double check for errors here on Lean migration to v4.9.0. Angles do not work with Fin 2 → ℝ, but dist does not work for EuclideanSpace ℝ (Fin 2).
noncomputable abbrev putnam_1965_a1_solution : ℝ := sorry
-- Real.pi / 15
theorem putnam_1965_a1
(π : ℝ := Real.pi)
(A B C X Y : EuclideanSpace ℝ (Fin 2))
(hABC : ¬Collinear ℝ {A, B, C})
(hangles : ∠ C A B < ∠ B C A ∧ ∠ B C A < π/2 ∧ π/2 < ∠ A B C)
(hX : Collinear ℝ {X, B, C} ∧ ∠ X A B = (π - ∠ C A B)/2(A 0 - X 0)^2 + (A 1 - X 1)^2 = (A 0 - B 0)^2 + (A 1 - B 1)^2)
(hY : Collinear ℝ {Y, C, A} ∧ ∠ Y B C = (π - ∠ A B C)/2(B 0 - Y 0)^2 + (B 1 - Y 1)^2 = (A 0 - B 0)^2 + (A 1 - B 1)^2)
(hX : Collinear ℝ {X, B, C} ∧ ∠ X A B = (π - ∠ C A B)/2dist A X = dist A B)
(hY : Collinear ℝ {Y, C, A} ∧ ∠ Y B C = (π - ∠ A B C)/2dist B Y = dist A B)
: ∠ C A B = putnam_1965_a1_solution :=
sorry
12 changes: 6 additions & 6 deletions lean4/src/putnam_1965_b6.lean
Original file line number Diff line number Diff line change
Expand Up @@ -4,11 +4,11 @@ open BigOperators
open EuclideanGeometry Topology Filter Complex SimpleGraph.Walk

theorem putnam_1965_b6
(A B C D : Fin 2 → ℝ)
(S : Set (Fin 2 → ℝ) := {A, B, C, D})
(A B C D : EuclideanSpace ℝ (Fin 2))
(S : Set (EuclideanSpace ℝ (Fin 2)) := {A, B, C, D})
(hdistinct : S.ncard = 4)
(through : (ℝ × (Fin 2 → ℝ)) → (Fin 2 → ℝ)Prop := fun (r, P) => fun Q => Euclidean.dist P Q = r)
(hABCD : ∀ r s : ℝ, ∀ P Q : Fin 2 → ℝ, through (r, P) A ∧ through (r, P) B ∧ through (s, Q) C ∧ through (s, Q) D →
∃ I : Fin 2 → ℝ, through (r, P) I ∧ through (s, Q) I)
: Collinear ℝ S ∨ ∃ r : ℝ, ∃ P : Fin 2 → ℝ, ∀ Q ∈ S, through (r, P) Q :=
(through : (ℝ × (EuclideanSpace ℝ (Fin 2))) → (EuclideanSpace ℝ (Fin 2))Prop := fun (r, P) => fun Q => dist P Q = r)
(hABCD : ∀ r s : ℝ, ∀ P Q : EuclideanSpace ℝ (Fin 2), through (r, P) A ∧ through (r, P) B ∧ through (s, Q) C ∧ through (s, Q) D →
∃ I : EuclideanSpace ℝ (Fin 2), through (r, P) I ∧ through (s, Q) I)
: Collinear ℝ S ∨ ∃ r : ℝ, ∃ P : EuclideanSpace ℝ (Fin 2), ∀ Q ∈ S, through (r, P) Q :=
sorry
20 changes: 10 additions & 10 deletions lean4/src/putnam_1966_a2.lean
Original file line number Diff line number Diff line change
Expand Up @@ -3,16 +3,16 @@ open BigOperators

theorem putnam_1966_a2
(r : ℝ)
(A B C : Fin 2 → ℝ)
(A B C : EuclideanSpace ℝ (Fin 2))
(hABC : ¬Collinear ℝ {A, B, C})
(a : ℝ := Euclidean.dist B C)
(b : ℝ := Euclidean.dist C A)
(c : ℝ := Euclidean.dist A B)
(p : ℝ := (Euclidean.dist B C + Euclidean.dist C A + Euclidean.dist A B)/2)
(hr : ∃ I : Fin 2 → ℝ,
(∃! P : Fin 2 → ℝ, Euclidean.dist I P = r ∧ Collinear ℝ {P, B, C}) ∧
(∃! Q : EuclideanSpace ℝ (Fin 2), Euclidean.dist I Q = r ∧ Collinear ℝ {Q, C, A}) ∧
(∃! R : EuclideanSpace ℝ (Fin 2), Euclidean.dist I R = r ∧ Collinear ℝ {R, A, B}) ∧
(∀ Z : EuclideanSpace ℝ (Fin 2), Euclidean.dist I Z ≤ r → Z ∈ convexHull ℝ {A, B, C}))
(a : ℝ := dist B C)
(b : ℝ := dist C A)
(c : ℝ := dist A B)
(p : ℝ := (dist B C + dist C A + dist A B)/2)
(hr : ∃ I : EuclideanSpace ℝ (Fin 2),
(∃! P : EuclideanSpace ℝ (Fin 2), dist I P = r ∧ Collinear ℝ {P, B, C}) ∧
(∃! Q : EuclideanSpace ℝ (Fin 2), dist I Q = r ∧ Collinear ℝ {Q, C, A}) ∧
(∃! R : EuclideanSpace ℝ (Fin 2), dist I R = r ∧ Collinear ℝ {R, A, B}) ∧
(∀ Z : EuclideanSpace ℝ (Fin 2), dist I Z ≤ r → Z ∈ convexHull ℝ {A, B, C}))
: 1/(p - a)^2 + 1/(p - b)^2 + 1/(p - c)^21/r^2 :=
sorry
4 changes: 2 additions & 2 deletions lean4/src/putnam_1966_b1.lean
Original file line number Diff line number Diff line change
Expand Up @@ -6,9 +6,9 @@ open Topology Filter
theorem putnam_1966_b1
(n : ℕ)
(hn : n ≥ 3)
(L : ZMod n → (Fin 2 → ℝ))
(L : ZMod n → (EuclideanSpace ℝ (Fin 2)))
(hsq : ∀ i : ZMod n, L i 0 ∈ Set.Icc 0 1 ∧ L i 1 ∈ Set.Icc 0 1)
(hnoncol : ∀ i j k : ZMod n, i ≠ j ∧ j ≠ k ∧ k ≠ i → ¬Collinear ℝ {L i, L j, L k})
(hconvex : ∀ i : ZMod n, segment ℝ (L i) (L (i + 1)) ∩ interior (convexHull ℝ {L j | j : ZMod n}) = ∅)
: ∑ i : Fin n, (Euclidean.dist (L i) (L (i + 1)))^24 :=
: ∑ i : Fin n, (dist (L i) (L (i + 1)))^24 :=
sorry
4 changes: 2 additions & 2 deletions lean4/src/putnam_1967_a5.lean
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ open BigOperators
open Nat Topology Filter

theorem putnam_1967_a5
(R : Set (Fin 2 → ℝ))
(R : Set (EuclideanSpace ℝ (Fin 2)))
(hR : Convex ℝ R ∧ (MeasureTheory.volume R).toReal > Real.pi / 4)
: ∃ P ∈ R, ∃ Q ∈ R, Euclidean.dist P Q = 1 :=
: ∃ P ∈ R, ∃ Q ∈ R, dist P Q = 1 :=
sorry
14 changes: 7 additions & 7 deletions lean4/src/putnam_1967_b1.lean
Original file line number Diff line number Diff line change
Expand Up @@ -5,14 +5,14 @@ open Nat Topology Filter

theorem putnam_1967_b1
(r : ℝ)
(L : ZMod 6 → (Fin 2 → ℝ))
(P : Fin 2 → ℝ := midpoint ℝ (L 1) (L 2))
(Q : Fin 2 → ℝ := midpoint ℝ (L 3) (L 4))
(R : Fin 2 → ℝ := midpoint ℝ (L 5) (L 0))
(L : ZMod 6 → (EuclideanSpace ℝ (Fin 2)))
(P : EuclideanSpace ℝ (Fin 2) := midpoint ℝ (L 1) (L 2))
(Q : EuclideanSpace ℝ (Fin 2) := midpoint ℝ (L 3) (L 4))
(R : EuclideanSpace ℝ (Fin 2) := midpoint ℝ (L 5) (L 0))
(hr : r > 0)
(hcyclic : ∃ (O : Fin 2 → ℝ), ∀ i : ZMod 6, Euclidean.dist O (L i) = r)
(hcyclic : ∃ (O : EuclideanSpace ℝ (Fin 2)), ∀ i : ZMod 6, dist O (L i) = r)
(horder : ∀ i j : ZMod 6, i + 1 = j ∨ i = j + 1 ∨ segment ℝ (L i) (L j) ∩ interior (convexHull ℝ {L k | k : ZMod 6}) ≠ ∅)
(hlens : Euclidean.dist (L 0) (L 1) = r ∧ Euclidean.dist (L 2) (L 3) = r ∧ Euclidean.dist (L 4) (L 5) = r)
(hlens : dist (L 0) (L 1) = r ∧ dist (L 2) (L 3) = r ∧ dist (L 4) (L 5) = r)
(hdist : L 1 ≠ L 2 ∧ L 3 ≠ L 4 ∧ L 5 ≠ L 0)
: Euclidean.dist P Q = Euclidean.dist R P ∧ Euclidean.dist Q R = Euclidean.dist P Q :=
: dist P Q = dist R P ∧ dist Q R = dist P Q :=
sorry
6 changes: 3 additions & 3 deletions lean4/src/putnam_1968_a4.lean
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@ open Finset

theorem putnam_1968_a4
(n : ℕ)
(S : Fin n → (Fin 3 → ℝ))
(hS : ∀ i : Fin n, (S i 0)^2 + (S i 1)^2 + (S i 2)^2 = 1)
: ∑ i : Fin n, ∑ j : Fin n, (if i < j then (Euclidean.dist (S i) (S j))^2 else (0 : ℝ)) ≤ n^2 :=
(S : Fin n → (EuclideanSpace ℝ (Fin 3)))
(hS : ∀ i : Fin n, dist 0 (S i) = 1)
: ∑ i : Fin n, ∑ j : Fin n, (if i < j then (dist (S i) (S j))^2 else (0 : ℝ)) ≤ n^2 :=
sorry
12 changes: 6 additions & 6 deletions lean4/src/putnam_1970_b6.lean
Original file line number Diff line number Diff line change
Expand Up @@ -4,14 +4,14 @@ open BigOperators
open Metric Set EuclideanGeometry Filter Topology

theorem putnam_1970_b6
(L : ZMod 4 → (Fin 2 → ℝ))
(S : Set (Fin 2 → ℝ) := {L i | i : ZMod 4})
(L : ZMod 4 → (EuclideanSpace ℝ (Fin 2)))
(S : Set (EuclideanSpace ℝ (Fin 2)) := {L i | i : ZMod 4})
(hSquad : S.ncard = 4 ∧ ∀ s ⊆ S, s.ncard = 3 → ¬ Collinear ℝ s)
(hlens : Euclidean.dist (L 0) (L 1) > 0Euclidean.dist (L 1) (L 2) > 0Euclidean.dist (L 2) (L 3) > 0Euclidean.dist (L 3) (L 0) > 0)
(hlens : dist (L 0) (L 1) > 0 ∧ dist (L 1) (L 2) > 0 ∧ dist (L 2) (L 3) > 0 ∧ dist (L 3) (L 0) > 0)
(horder : ∀ i : ZMod 4, segment ℝ (L i) (L (i + 1)) ∩ interior (convexHull ℝ S) = ∅)
(hcircum : ∃ (O: Fin 2 → ℝ) (r : ℝ), O ∈ convexHull ℝ S ∧ r > 0 ∧ ∀ i : ZMod 4,
∃! I : Fin 2 → ℝ, Collinear ℝ {I, L i, L (i + 1)} ∧ Euclidean.dist O I = r)
(hcircum : ∃ (O: EuclideanSpace ℝ (Fin 2)) (r : ℝ), O ∈ convexHull ℝ S ∧ r > 0 ∧ ∀ i : ZMod 4,
∃! I : EuclideanSpace ℝ (Fin 2), Collinear ℝ {I, L i, L (i + 1)} ∧ dist O I = r)
(harea : (MeasureTheory.volume (convexHull ℝ S)).toReal =
Real.sqrt (Euclidean.dist (L 0) (L 1) * Euclidean.dist (L 1) (L 2) * Euclidean.dist (L 2) (L 3) * Euclidean.dist (L 3) (L 0)))
Real.sqrt (dist (L 0) (L 1) * dist (L 1) (L 2) * dist (L 2) (L 3) * dist (L 3) (L 0)))
: Cospherical S :=
sorry
4 changes: 2 additions & 2 deletions lean4/src/putnam_1971_a3.lean
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ theorem putnam_1971_a3
(habclattice : a.1 = round a.1 ∧ a.2 = round a.2 ∧ b.1 = round b.1 ∧ b.2 = round b.2 ∧ c.1 = round c.1 ∧ c.2 = round c.2)
(habcneq : a ≠ b ∧ a ≠ c ∧ b ≠ c)
(hR : R > 0)
(oncircle : (ℝ × ℝ) → ℝ → (ℝ × ℝ) → Prop := fun C r p => Euclidean.dist p C = r)
(oncircle : (ℝ × ℝ) → ℝ → (ℝ × ℝ) → Prop := fun C r p => Real.sqrt ((p.1 - C.1)^2 + (p.2 - C.2)^2) = r)
(hcircle : ∃ C : ℝ × ℝ, oncircle C R a ∧ oncircle C R b ∧ oncircle C R c)
: (Euclidean.dist a b) * (Euclidean.dist a c) * (Euclidean.dist b c) ≥ 2 * R :=
: (Real.sqrt ((a.1 - b.1)^2 + (a.2 - b.2)^2)) * (Real.sqrt ((a.1 - c.1)^2 + (a.2 - c.2)^2)) * (Real.sqrt ((b.1 - c.1)^2 + (b.2 - c.2)^2)) ≥ 2 * R :=
sorry
3 changes: 1 addition & 2 deletions lean4/src/putnam_1972_b5.lean
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,5 @@ theorem putnam_1972_b5
(A B C D : EuclideanSpace ℝ (Fin 3))
(hnonplanar : ¬Coplanar ℝ {A, B, C, D})
(hangles : ∠ A B C = ∠ C D A ∧ ∠ B C D = ∠ D A B)
(distance : (Fin 3 → ℝ) → (Fin 3 → ℝ) → ℝ := fun X Y => ∑ i, (X i - Y i)^2)
: distance A B = distance C D ∧ distance B C = distance D A :=
: dist A B = dist C D ∧ dist B C = dist D A :=
sorry
4 changes: 2 additions & 2 deletions lean4/src/putnam_1973_a1.lean
Original file line number Diff line number Diff line change
Expand Up @@ -4,12 +4,12 @@ open BigOperators
open Nat Set MeasureTheory Topology Filter

theorem putnam_1973_a1
(A B C X Y Z : Fin 2 → ℝ)
(A B C X Y Z : EuclideanSpace ℝ (Fin 2))
(hnoncol : ¬Collinear ℝ {A, B, C})
(hX : X ∈ segment ℝ B C)
(hY : Y ∈ segment ℝ C A)
(hZ : Z ∈ segment ℝ A B)
: ((Euclidean.dist B X ≤ Euclidean.dist X C ∧ Euclidean.dist C Y ≤ Euclidean.dist Y A ∧ Euclidean.dist A Z ≤ Euclidean.dist Z B) →
: ((dist B X ≤ dist X C ∧ dist C Y ≤ dist Y A ∧ dist A Z ≤ dist Z B) →
volume (convexHull ℝ {X, Y, Z}) ≥ (1/4) * volume (convexHull ℝ {A, B, C})) ∧
sInf {volume (convexHull ℝ {A, Z, Y}), volume (convexHull ℝ {B, X, Z}), volume (convexHull ℝ {C, Y, X})} ≤ volume (convexHull ℝ {X, Y, Z}) :=
sorry
6 changes: 3 additions & 3 deletions lean4/src/putnam_1974_b1.lean
Original file line number Diff line number Diff line change
Expand Up @@ -4,9 +4,9 @@ open BigOperators
open Set Nat Polynomial

abbrev putnam_1974_b1_solution : (Fin 5 → (ℝ × ℝ)) -> Prop := sorry
-- fun points => (∃ (B : ℝ) (ordering : Equiv.Perm (Fin 5)), ∀ i : Fin 5, Euclidean.dist (points (ordering i)) (points (ordering (i+1))) = B)
-- fun points => (∃ (B : ℝ) (ordering : Equiv.Perm (Fin 5)), ∀ i : Fin 5, Real.sqrt (((points (ordering i)).1 - (points (ordering (i+1))).1)^2 + ((points (ordering i)).2 - (points (ordering (i+1))).2)^2) = B)
theorem putnam_1974_b1
(on_unit_circle : (Fin 5 → (ℝ × ℝ)) -> Prop := fun points => ∀ i : Fin 5, Euclidean.dist (points i) (0,0) = 1)
(distance_fun : (Fin 5 → (ℝ × ℝ)) -> ℝ := fun points => ∑ idx : Fin 5 × Fin 5, if idx.1 < idx.2 then Euclidean.dist (points idx.1) (points idx.2) else 0)
(on_unit_circle : (Fin 5 → (ℝ × ℝ)) -> Prop := fun points => ∀ i : Fin 5, Real.sqrt ((points i).1^2 + (points i).2^2) = 1)
(distance_fun : (Fin 5 → (ℝ × ℝ)) -> ℝ := fun points => ∑ idx : Fin 5 × Fin 5, if idx.1 < idx.2 then Real.sqrt (((points idx.1).1 - (points idx.2).1)^2 + ((points idx.1).2 - (points idx.2).2)^2) else 0)
: ∀ points : Fin 5 → (ℝ × ℝ), on_unit_circle points → (distance_fun points = sSup {R | ∃ pts, on_unit_circle pts ∧ R = distance_fun pts} ↔ putnam_1974_b1_solution points) :=
sorry
4 changes: 2 additions & 2 deletions lean4/src/putnam_1978_a6.lean
Original file line number Diff line number Diff line change
Expand Up @@ -4,8 +4,8 @@ open BigOperators
open Set Real

theorem putnam_1978_a6
(S : Finset (Fin 2 → ℝ))
(S : Finset (EuclideanSpace ℝ (Fin 2)))
(n : ℕ := S.card)
(npos : n > 0)
: ({pair : Set (Fin 2 → ℝ) | ∃ P ∈ S, ∃ Q ∈ S, pair = {P, Q} ∧ Euclidean.dist P Q = 1}.ncard < 2 * (n : ℝ) ^ ((3 : ℝ) / 2)) :=
: ({pair : Set (EuclideanSpace ℝ (Fin 2)) | ∃ P ∈ S, ∃ Q ∈ S, pair = {P, Q} ∧ dist P Q = 1}.ncard < 2 * (n : ℝ) ^ ((3 : ℝ) / 2)) :=
sorry
2 changes: 1 addition & 1 deletion lean4/src/putnam_1979_a4.lean
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,6 @@ theorem putnam_1979_a4
(w : (Fin 2 → ℝ) × (Fin 2 → ℝ) → ℝ → (Fin 2 → ℝ) := fun (P, Q) => fun x : ℝ => fun i : Fin 2 => x * P i + (1 - x) * Q i)
: (∀ R : Finset (Fin 2 → ℝ), ∀ B : Finset (Fin 2 → ℝ), A (R, B) → ∃ v : Finset ((Fin 2 → ℝ) × (Fin 2 → ℝ)),
(∀ L ∈ v, ∀ M ∈ v, L ≠ M → ∀ x ∈ Icc 0 1, ∀ y ∈ Icc 0 1,
Euclidean.dist (w (L.1, L.2) x) (w (M.1, M.2) y) ≠ 0) ∧
Real.sqrt ((w (L.1, L.2) x 0 - w (M.1, M.2) y 0)^2 + (w (L.1, L.2) x 1 - w (M.1, M.2) y 1)^2) ≠ 0) ∧
v.card = R.card ∧ ∀ L ∈ v, L.1 ∈ R ∧ L.2 ∈ B) ↔ putnam_1979_a4_solution :=
sorry
2 changes: 1 addition & 1 deletion lean4/src/putnam_1988_a4.lean
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,6 @@ open Set Filter Topology
abbrev putnam_1988_a4_solution : Prop × Prop := sorry
-- (True, False)
theorem putnam_1988_a4
(p : ℕ → Prop := fun n ↦ ∀ color : (Fin 2 → ℝ) → Fin n, ∃ p q : Fin 2 → ℝ, color p = color q ∧ Euclidean.dist p q = 1)
(p : ℕ → Prop := fun n ↦ ∀ color : (EuclideanSpace ℝ (Fin 2)) → Fin n, ∃ p q : EuclideanSpace ℝ (Fin 2), color p = color q ∧ dist p q = 1)
: (let (a, b) := putnam_1988_a4_solution; (p 3 ↔ a) ∧ (p 9 ↔ b)) :=
sorry
8 changes: 4 additions & 4 deletions lean4/src/putnam_1989_b1.lean
Original file line number Diff line number Diff line change
Expand Up @@ -6,10 +6,10 @@ open Nat
abbrev putnam_1989_b1_solution : ℤ × ℤ × ℤ × ℤ := sorry
-- (4, 2, -5, 3)
theorem putnam_1989_b1
(square : Set (Fin 2 → ℝ) := {p : Fin 2 → ℝ | ∀ i : Fin 2, p i ∈ Set.Icc 0 1})
(edges : Set (Fin 2 → ℝ) := {p ∈ square | p 0 = 0 ∨ p 0 = 1 ∨ p 1 = 0 ∨ p 1 = 1})
(center : Fin 2 → ℝ := (fun i : Fin 2 => 1 / 2))
(Scloser : Set (Fin 2 → ℝ) := {p ∈ square | ∀ q ∈ edges, Euclidean.dist p center < Euclidean.dist p q})
(square : Set (EuclideanSpace ℝ (Fin 2)) := {p : EuclideanSpace ℝ (Fin 2) | ∀ i : Fin 2, p i ∈ Set.Icc 0 1})
(edges : Set (EuclideanSpace ℝ (Fin 2)) := {p ∈ square | p 0 = 0 ∨ p 0 = 1 ∨ p 1 = 0 ∨ p 1 = 1})
(center : EuclideanSpace ℝ (Fin 2) := (fun i : Fin 2 => 1 / 2))
(Scloser : Set (EuclideanSpace ℝ (Fin 2)) := {p ∈ square | ∀ q ∈ edges, dist p center < dist p q})
: let (a, b, c, d) := putnam_1989_b1_solution; b > 0 ∧ d > 0 ∧ (¬∃ n : ℤ, n^2 = b) ∧
(MeasureTheory.volume Scloser).toReal / (MeasureTheory.volume square).toReal = (a * Real.sqrt b + c) / d :=
sorry
2 changes: 1 addition & 1 deletion lean4/src/putnam_1990_a4.lean
Original file line number Diff line number Diff line change
Expand Up @@ -6,5 +6,5 @@ open Filter Topology Nat
abbrev putnam_1990_a4_solution : ℕ := sorry
-- 3
theorem putnam_1990_a4
: sInf {n : ℕ | ∃ S : Set (Fin 2 → ℝ), S.encard = n ∧ ∀ Q : Fin 2 → ℝ, ∃ P ∈ S, Irrational (Euclidean.dist P Q)} = putnam_1990_a4_solution :=
: sInf {n : ℕ | ∃ S : Set (EuclideanSpace ℝ (Fin 2)), S.encard = n ∧ ∀ Q : EuclideanSpace ℝ (Fin 2), ∃ P ∈ S, Irrational (dist P Q)} = putnam_1990_a4_solution :=
sorry
10 changes: 5 additions & 5 deletions lean4/src/putnam_1991_a4.lean
Original file line number Diff line number Diff line change
Expand Up @@ -6,11 +6,11 @@ open Filter Topology
abbrev putnam_1991_a4_solution : Prop := sorry
-- True
theorem putnam_1991_a4
(climit : (ℕ → (Fin 2 → ℝ)) → Prop)
(climit : (ℕ → (EuclideanSpace ℝ (Fin 2))) → Prop)
(rareas : (ℕ → ℝ) → Prop)
(crline : (ℕ → (Fin 2 → ℝ)) → (ℕ → ℝ) → Prop)
(hclimit : ∀ c : ℕ → (Fin 2 → ℝ), climit c = ¬∃ (p : Fin 2 → ℝ), ∀ ε : ℝ, ε > 0 → ∃ i : ℕ, c i ∈ Metric.ball p ε)
(crline : (ℕ → (EuclideanSpace ℝ (Fin 2))) → (ℕ → ℝ) → Prop)
(hclimit : ∀ c : ℕ → (EuclideanSpace ℝ (Fin 2)), climit c = ¬∃ (p : EuclideanSpace ℝ (Fin 2)), ∀ ε : ℝ, ε > 0 → ∃ i : ℕ, c i ∈ Metric.ball p ε)
(hrareas : ∀ r : ℕ → ℝ, rareas r = ∃ A : ℝ, Tendsto (fun n : ℕ => ∑ i : Fin n, Real.pi * (r i) ^ 2) atTop (𝓝 A))
(hcrline : ∀ (c : ℕ → (Fin 2 → ℝ)) (r : ℕ → ℝ), crline c r = (∀ v w : Fin 2 → ℝ, w ≠ 0 → ∃ i : ℕ, {p : Fin 2 → ℝ | ∃ t : ℝ, p = v + t • w} ∩ Metric.closedBall (c i) (r i) ≠ ∅))
: (∃ (c : ℕ → (Fin 2 → ℝ)) (r : ℕ → ℝ), (∀ i : ℕ, r i ≥ 0) ∧ climit c ∧ rareas r ∧ crline c r) ↔ putnam_1991_a4_solution :=
(hcrline : ∀ (c : ℕ → (EuclideanSpace ℝ (Fin 2))) (r : ℕ → ℝ), crline c r = (∀ v w : EuclideanSpace ℝ (Fin 2), w ≠ 0 → ∃ i : ℕ, {p : EuclideanSpace ℝ (Fin 2) | ∃ t : ℝ, p = v + t • w} ∩ Metric.closedBall (c i) (r i) ≠ ∅))
: (∃ (c : ℕ → (EuclideanSpace ℝ (Fin 2))) (r : ℕ → ℝ), (∀ i : ℕ, r i ≥ 0) ∧ climit c ∧ rareas r ∧ crline c r) ↔ putnam_1991_a4_solution :=
sorry
6 changes: 3 additions & 3 deletions lean4/src/putnam_1993_b5.lean
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@ import Mathlib
open BigOperators

theorem putnam_1993_b5
(pdists : (Fin 4 → (Fin 2 → ℝ)) → Prop)
(hpdists: ∀ p : Fin 4 → (Fin 2 → ℝ), pdists p = ∀ i j : Fin 4, i ≠ j → (Euclidean.dist (p i) (p j) = round (Euclidean.dist (p i) (p j)) ∧ Odd (round (Euclidean.dist (p i) (p j)))))
: ¬∃ p : Fin 4 → (Fin 2 → ℝ), pdists p :=
(pdists : (Fin 4 → (EuclideanSpace ℝ (Fin 2))) → Prop)
(hpdists: ∀ p : Fin 4 → (EuclideanSpace ℝ (Fin 2)), pdists p = ∀ i j : Fin 4, i ≠ j → (dist (p i) (p j) = round (dist (p i) (p j)) ∧ Odd (round (dist (p i) (p j)))))
: ¬∃ p : Fin 4 → (EuclideanSpace ℝ (Fin 2)), pdists p :=
sorry
7 changes: 3 additions & 4 deletions lean4/src/putnam_1994_a3.lean
Original file line number Diff line number Diff line change
Expand Up @@ -3,10 +3,9 @@ open BigOperators

open Filter Topology

-- Note: The formalization here differs slightly from the original problem statement, in that T is the entire triangle, not just the sides. We adopt the former interpretation because it is simpler to state and maintains the difficulty of the problem.
theorem putnam_1994_a3
(vec : ℝ → ℝ → (Fin 2 → ℝ))
(T : Set (Fin 2 → ℝ) := convexHull ℝ {vec 0 0, vec 1 0, vec 0 1})
(T : Set (EuclideanSpace ℝ (Fin 2)) := convexHull ℝ {![0,0], ![1,0], ![0,1]})
(Tcolors : T → Fin 4)
(hvec : ∀ x y : ℝ, (vec x y) 0 = x ∧ (vec x y) 1 = y)
: ∃ p q : T, Tcolors p = Tcolors q ∧ Euclidean.dist p.1 q.12 - Real.sqrt 2 :=
: ∃ p q : T, Tcolors p = Tcolors q ∧ dist p.1 q.12 - Real.sqrt 2 :=
sorry
Loading

0 comments on commit 14b744d

Please sign in to comment.