Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 short.
Everything in the paper is implemented (including vanilla BERT4Rec and SASRec), and can be reproduced.
./scripts/build.sh
Download corresponding datasets into some directory, such as ./roughs
.
For Steam dataset, use version 2.
Rename datasets: 'ml1m'
for MovieLens-1M, 'ml20m'
for MovieLens-2M, 'steam2'
for Steam.
--rough_root
: for original dataset files--data_root
: for processed data files
python preprocess.py prepare ml1m --data_root ./data --rough_root ./roughs
python preprocess.py prepare ml20m --data_root ./data --rough_root ./roughs
python preprocess.py prepare steam2 --data_root ./data --rough_root ./roughs
For some stats:
python preprocess.py count stats --data_root ./data --rough_root ./roughs > dstats.tsv
See default configuration setting in entry.py
.
To modify configuration, make some directory under runs/
like ./runs/ml1m/bert4rec/vanilla/
, and create config.json
.
My x0.sh
file that uses GPU No. 0:
runpy () {
docker run \
-it \
--rm \
--init \
--gpus '"device=0"' \
--shm-size 16G \
--volume="$HOME/.cache/torch:/root/.cache/torch" \
--volume="$PWD:/workspace" \
session-aware-bert4rec \
python "$@"
}
runpy entry.py ml1m/bert4rec/vanilla
The df_
prefix always means DataFrame from Pandas.
uid
(str|int): User ID (unique).iid
(str|int): Item ID (unique).sid
(str|int): Session ID (unique), used only for session separation.uindex
(int): mapped index number of User ID, 1 ~ n.iindex
(int): mapped index number of Item ID, 1 ~ m.timestamp
(int): UNIX timestamp.
After preprocessing, we'll have followings in each data/:dataset_name/
directory.
uid2uindex.pkl
(dict): {uid
→uindex
}.iid2iindex.pkl
(dict): {iid
→iindex
}.df_rows.pkl
(df): column of (uindex
,iindex
,sid
,timestamp
), with no index.train.pkl
(dict): {uindex
→ [list of (iindex
,sid
,timestamp
)]}.valid.pkl
(dict): {uindex
→ [list of (iindex
,sid
,timestamp
)]}.test.pkl
(dict): {uindex
→ [list of (iindex
,sid
,timestamp
)]}.ns_random.pkl
(dict): {uindex
-> [list ofiindex
]}.ns_popular.pkl
(dict): {uindex
-> [list ofiindex
]}.