Skip to content

Commit

Permalink
chore: rename eso→precompose-faithful
Browse files Browse the repository at this point in the history
  • Loading branch information
TOTBWF committed Nov 25, 2024
1 parent 2ff2582 commit 6d5c33b
Show file tree
Hide file tree
Showing 3 changed files with 6 additions and 6 deletions.
4 changes: 2 additions & 2 deletions src/Cat/Functor/Properties.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -231,7 +231,7 @@ precomposition functor $(-) \circ F : [\cD,\cA] \to [\cC,\cA]$ is faithful
for every precategory $\cA$.

```agda
eso→precompose-faithful
is-eso→precompose-is-faithful
: {oa ℓa} {A : Precategory oa ℓa}
(F : Functor C D)
is-eso F
Expand All @@ -250,7 +250,7 @@ $F$ doesn't miss out on any objects of $d$, but the actual proof involves
some rather tedious calculations.
</summary>
```agda
eso→precompose-faithful {A = A} F F-eso {G} {H} {α} {β} αL=βL =
is-eso→precompose-is-faithful {A = A} F F-eso {G} {H} {α} {β} αL=βL =
ext λ d ∥-∥-out! do
(c , Fc≅d) F-eso d
let module Fc≅d = D._≅_ Fc≅d
Expand Down
4 changes: 2 additions & 2 deletions src/Cat/Univalent/Rezk/Universal.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -71,7 +71,7 @@ category]], then $- \circ H$ is essentially surjective. By the principle
of unique choice, it is an equivalence, and thus^[since both its domain
and codomain are univalent] an isomorphism.

Luckily, we `already know`{.Agda ident=eso→precompose-faithful} that precomposition
Luckily, we `already know`{.Agda ident=is-eso→precompose-is-faithful} that precomposition
with an eso functor extends to a faithful functor. Unfortunately, the
remaining two steps are both _quite_ technical: that's because we're given
some _mere_^[truncated] data, from the assumption that $H$ is a weak
Expand Down Expand Up @@ -269,7 +269,7 @@ $- \circ H$ is faithful, and now we've shown it is full, it is fully faithful.
res =
full+faithful→ff (precompose H)
full
(eso→precompose-faithful H H-eso)
(is-eso→precompose-is-faithful H H-eso)
```

## Essential surjectivity
Expand Down
4 changes: 2 additions & 2 deletions src/HoTT.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -1000,7 +1000,7 @@ _ = Displayed
_ = Rezk-completion-is-category
_ = weak-equiv→pre-equiv
_ = weak-equiv→pre-iso
_ = eso→precompose-faithful
_ = is-eso→precompose-is-faithful
_ = eso-full→pre-ff
_ = Rezk-completion
_ = complete-is-eso
Expand All @@ -1009,7 +1009,7 @@ _ = complete
```
-->

* Lemma 9.9.1: `eso→precompose-faithful`{.Agda}
* Lemma 9.9.1: `is-eso→precompose-is-faithful`{.Agda}
* Lemma 9.9.2: `eso-full→pre-ff`{.Agda}
* Lemma 9.9.4: `weak-equiv→pre-equiv`{.Agda}, `weak-equiv→pre-iso`{.Agda}
* Theorem 9.9.5: `Rezk-completion`{.Agda}, `Rezk-completion-is-category`{.Agda}, `complete`{.Agda}, `complete-is-ff`{.Agda}, `complete-is-eso`{.Agda}.
Expand Down

0 comments on commit 6d5c33b

Please sign in to comment.