Skip to content

This is a simple spam classifier application built using Streamlit, NLTK, and a machine learning model. The application takes a user-inputted message and classifies it as spam or not spam (ham).

Notifications You must be signed in to change notification settings

that-ar-guy/SMS-CLASSIFIER

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SMS-CLASSIFIER

Overview

This is a simple spam classifier application built using Streamlit, NLTK, and a machine learning model. The application takes a user-inputted message and classifies it as spam or not spam (ham).

Files

  1. P1.py: This is the main application file that utilizes the Streamlit framework for creating the user interface. It also loads the pre-trained machine learning model (model.pkl) and the vectorizer (vectorizer.pkl) for text processing.

  2. model.pkl: This file contains the pickled machine learning model trained to classify messages as spam or not spam. The model is loaded in the app.py file for making predictions.

  3. vectorizer.pkl: This file contains the pickled vectorizer used to transform input text data into a format suitable for the machine learning model. It is loaded in the app.py file for preprocessing user-inputted messages.

4.spam.csv: This file contains the dataset used to create the machine learning model.

Text Preprocessing

The application performs text preprocessing on the user-inputted message before making predictions. The stemming function in app.py is responsible for converting the input text into a format suitable for the machine learning model. It involves removing non-alphabetic characters, converting to lowercase, tokenization, stemming, and removing English stopwords.

How to Run the Application

To run the SMS Classifier app, make sure you have Python and the required libraries installed. You can install the necessary dependencies using the following command:

pip install streamlit nltk

About

This is a simple spam classifier application built using Streamlit, NLTK, and a machine learning model. The application takes a user-inputted message and classifies it as spam or not spam (ham).

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages