Using Seq2Seq to assign actions to trajectories.
These instructions will get you a copy of the project up and running on your local machine for development and testing purposes. See deployment for notes on how to deploy the project on a live system.
For this repo you need:
- tensorflow -v 1.4.0
- Numpy -v 1.14.2
- Scikit-learn -v 0.19.1
- argparse -v 1.1
pip install tensorflow-gpu=1.4.0
pip install numpy, scikit-learn, argparse
A step by step series of examples that tell you how to get a development env running.
Download the repository.
git clone [email protected]:yadrimz/autoencoding-trajectories.git
You can train and infer. Run help for full documentation.
python main.py -h
To train:
python main.py --mode 'train'
Sample output:
Batch: 1
minibatch_loss: 1.0833992958068848
accuracy: 0.2222222222222222
sample: 1
sequence real id :> 8
target start :> [4 3 5]
predicted start :> [3 3 1]
target end region :> [3 5]
predicted end region :> [3 1]
sample: 2
sequence real id :> 7
target start :> [3 2 5]
predicted start :> [6 5 5]
target end region :> [2 5]
predicted end region :> [5 5]
sample: 3
sequence real id :> 14
target start :> [4 1 5]
predicted start :> [5 3 4]
target end region :> [1 5]
predicted end region :> [3 4]
To infer after having trained a model:
python main.py --mode 'infer'
Project File Structure:
-data
---timeseries_25_May_2018_18_51_49-walk3.npy
-models
---model.py
-utils
---utils.py
-main.py
-README.md
- Todor Davchev
This project is licensed under the MIT License - see the LICENSE.md file for details