forked from huggingface/nanotron
-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
d0facd6
commit a821f1e
Showing
1 changed file
with
91 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,91 @@ | ||
import torch | ||
import torchtune | ||
import flash_attn | ||
import flash_attn.layers.rotary | ||
|
||
|
||
class RotaryEmbeddingKyleLikeFA(torch.nn.Module): | ||
""" | ||
Has the same function signature as FA, for interleaved=True and separate q, kv. | ||
seqlen_offset = 0 | ||
Does not operate inplace, but that's fine for how it's used in Nanotron. | ||
""" | ||
def __init__(self, dim: int, base: float): | ||
super().__init__() | ||
self.dim = dim | ||
self.base = float(base) | ||
|
||
self.max_seq_len = None | ||
self.rpe = None | ||
|
||
def forward(self, q, kv): | ||
bs, q_len, n_heads, _ = q.shape | ||
assert self.dim == _ | ||
|
||
assert (bs, q_len, 2, n_heads, self.dim) == kv.shape | ||
|
||
if (self.rpe is None) or (self.max_seq_len != q_len): | ||
self.max_seq_len = q_len | ||
self.rpe = torchtune.modules.RotaryPositionalEmbeddings(dim=self.dim, | ||
max_seq_len=self.max_seq_len, | ||
base=self.base).to(device) | ||
q_out = self.rpe(q) | ||
kv_out = torch.stack((self.rpe(kv[:, :, 0]), kv[:, :, 1]), 2) | ||
return q_out, kv_out | ||
|
||
|
||
|
||
if __name__ == "__main__": | ||
device = torch.device(0) | ||
theta = 10000 | ||
|
||
batch_size = 3 | ||
dim_qk = 4 | ||
q_len = 256 | ||
kv_len = 256 | ||
n_heads = 4 | ||
|
||
max_seq_len = max(q_len, kv_len) | ||
|
||
print(max_seq_len) | ||
|
||
|
||
query_states = torch.rand(batch_size, q_len, n_heads, dim_qk, device=device) | ||
key_value_states = torch.rand(batch_size, kv_len, 2, n_heads, dim_qk, device=device).contiguous() | ||
|
||
|
||
interleaved = True | ||
# interleaved = False | ||
re1 = flash_attn.layers.rotary.RotaryEmbedding(dim=dim_qk, interleaved=interleaved, base=theta).to(device) | ||
re2 = torchtune.modules.RotaryPositionalEmbeddings(dim=dim_qk, max_seq_len=max_seq_len, base=theta).to(device) | ||
re3 = RotaryEmbeddingKyleLikeFA(dim=dim_qk, base=theta).to(device) | ||
|
||
|
||
|
||
print(key_value_states[:, :, 0].shape) | ||
|
||
out2 = re2(query_states) | ||
out3 = re2(key_value_states[:, :, 0]) | ||
# out4 = re2(key_value_states[:, :, 1]) | ||
|
||
out_eq = re3(query_states, kv=key_value_states) | ||
|
||
# torch.testing.assert_close(out2, query_states) | ||
out1 = re1(query_states, kv=key_value_states) | ||
|
||
torch.testing.assert_close(out_eq[0], out1[0]) | ||
torch.testing.assert_close(out_eq[1], out1[1]) | ||
|
||
|
||
# Do this second, since the computation is inplace | ||
torch.testing.assert_close(out1[0], query_states) | ||
|
||
test = torch.stack((out3, key_value_states[:, :, 1]), 2) | ||
torch.testing.assert_close(out1[1], test) | ||
# torch.testing.assert_close(out1[1][:, :, 0], out3) | ||
|
||
|
||
torch.testing.assert_close(out1[0], out2) | ||
|
||
print("done") | ||
|