Skip to content

Commit

Permalink
Sandbox run src/main.py
Browse files Browse the repository at this point in the history
  • Loading branch information
sweep-nightly[bot] authored Nov 25, 2023
1 parent e911488 commit bae2816
Showing 1 changed file with 8 additions and 8 deletions.
16 changes: 8 additions & 8 deletions src/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,29 +7,29 @@
from torchvision import datasets, transforms

# Step 1: Load MNIST Data and Preprocess
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
transform = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]
)

trainset = datasets.MNIST('.', download=True, train=True, transform=transform)
trainset = datasets.MNIST(".", download=True, train=True, transform=transform)
trainloader = DataLoader(trainset, batch_size=64, shuffle=True)


# Step 2: Define the PyTorch Model
class Net(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(28 * 28, 128)
self.fc2 = nn.Linear(128, 64)
self.fc3 = nn.Linear(64, 10)

def forward(self, x):

x = nn.functional.relu(self.fc1(x))
x = nn.functional.relu(self.fc2(x))
x = self.fc3(x)
return nn.functional.log_softmax(x, dim=1)


# Step 3: Train the Model
model = CNN()
optimizer = optim.SGD(model.parameters(), lr=0.01)
Expand All @@ -45,4 +45,4 @@ def forward(self, x):
loss.backward()
optimizer.step()

torch.save(model.state_dict(), "mnist_model.pth")
torch.save(model.state_dict(), "mnist_model.pth")

0 comments on commit bae2816

Please sign in to comment.