├── DataPrep.py ├── Dataset/ │ ├── Data.txt │ ├── data.csv ├── JIT.py ├── Kfold_Linear.py ├── Kfold_Poly_2.py ├── Kfold_Poly_3.py ├── Lasso_Linear.py ├── Lasso_Poly_2.py ├── Lasso_Poly_3.py ├── LinearRegression.py ├── Models/ │ ├── LinearModel.py │ ├── NeuralNet.py │ ├── PolynomialModel.py │ ├── Preprocessing/ │ │ ├── GridSearchCV.py │ │ ├── KFold.py │ │ ├── Lasso.py │ │ ├── PCA.py │ │ ├── init.py │ │ ├── pycache/ │ │ │ ├── GridSearchCV.cpython-311.pyc │ │ │ ├── KFold.cpython-311.pyc │ │ │ ├── Lasso.cpython-311.pyc │ │ │ ├── PCA.cpython-311.pyc │ │ │ ├── init.cpython-311.pyc │ ├── SimpleNet.py │ ├── init.py │ ├── pycache/ │ │ ├── LinearModel.cpython-311.pyc │ │ ├── NeuralNet.cpython-311.pyc │ │ ├── PolynomialModel.cpython-311.pyc │ │ ├── SimpleNet.cpython-311.pyc │ │ ├── init.cpython-311.pyc │ │ ├── utils.cpython-311.pyc │ ├── utils.py ├── Neural_Net_Compare.py ├── PCA.py ├── PCA_Linear.py ├── PCA_NN_1.py ├── PCA_NN_2.py ├── PCA_Poly_2.py ├── PCA_Poly_3.py ├── PolynomialRegression.py ├── README.md ├── Results/ │ ├── Kfold_Linear.png │ ├── Kfold_Poly_2.png │ ├── Kfold_Poly_3.png │ ├── Lasso-Linear.png │ ├── Lasso-Poly-2.png │ ├── Lasso-Poly-3.png │ ├── Linear_loss.png │ ├── PCA-scatter-Plot.png │ ├── PCA-u1.png │ ├── PCA-u2.png │ ├── PCA-u3.png │ ├── PCA-u4.png │ ├── PCA-u5.png │ ├── PCA-u6.png │ ├── PCA-u7.png │ ├── PCA_Linear.png │ ├── PCA_NN_MULTI.png │ ├── PCA_NN_Single.png │ ├── PCA_Poly_2.png │ ├── PCA_Poly_3.png │ ├── Poly_loss.png ├── init.py ├── directory.py
The Debutanizer column is a crucial component in the distillation process. It separates propane (C3) and butane (C4) from the naphtha stream. The main objectives are to increase the concentration of stabilized gasoline (C5) in the overheads and to decrease the concentration of butane (C4) in the bottoms. Soft sensors based on linear regression and higher order regression along with feature extraction methods like Principal Component Analysis (PCA) are implemented for improved control quality.
Input or predictor variables (u):
- u1: Top Temperature
- u2: Top Pressure
- u3: Reflux Flow
- u4: Flow to Next Process
- u5: 6th Tray Temperature
- u6: Bottom Temperature (repeated)
- u7: Bottom Temperature (repeated)
Target variable or response variable (y):
- Percentage of C5 in C4 (F_C5)
The objective is to develop soft sensors using linear regression and higher-order regression techniques to estimate the Percentage of C5 in C4 (F_C5) in the Debutanizer column. This aims to:
- Provide real-time estimation of F_C5 for proactive adjustments to process parameters.
- Reduce operational costs by minimizing reliance on expensive laboratory analyses.
- Enhance process control and stability for consistent product quality and reduced waste.
- MSE LOSS: 0.03241180293154075
- AIC: 16.858465269020208
- BIC: 39.74081311426133
- MSE LOSS: 0.02481301269715393
- AIC: 19.392774115781226
- BIC: 46.851591530070564
- MSE LOSS: 0.02244005206459875
- AIC: 13.42306402875656
- BIC: 27.15247273590123
- MSE LOSS: 0.044719823733125205
- AIC: 10.214676783420057
- BIC: 21.061813671938392
- MSE LOSS: 0.023987154250022288
- AIC: 11.460473663016867
- BIC: 22.307610551535202
- MSE LOSS: 0.024285145721552204
- AIC: 11.435780805453478
- BIC: 22.28291769397181
- MSE LOSS: 0.057633911176724555
- AIC: 19.809656966120116
- BIC: 51.84494394945769
- MSE LOSS: 0.030892300847618723
- AIC: 21.070816439005092
- BIC: 53.10610342234266
- MSE LOSS: 0.029712149840376605
- AIC: 20.918184972209723
- BIC: 52.95347195554729