-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
69 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,67 @@ | ||
import pandas as pd | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
import umap | ||
from scipy.interpolate import griddata | ||
from pyforecaster.formatter import Formatter | ||
from pyforecaster.forecaster import LinearForecaster, LGBForecaster | ||
|
||
data = pd.read_pickle('tests/data/test_data.zip').droplevel(0, 1) | ||
data = data.resample('1h').mean() | ||
formatter = Formatter().add_transform(['all'], lags=np.arange(24), relative_lags=True) | ||
formatter.add_transform(['all'], ['min', 'max'], agg_bins=[1, 2, 15, 20]) | ||
formatter.add_target_transform(['all'], lags=-np.arange(1, 12)) | ||
x, y = formatter.transform(data) | ||
n_tr = int(len(x) * 0.8) | ||
x_tr, x_te, y_tr, y_te = [x.iloc[:n_tr, :].copy(), x.iloc[n_tr:, :].copy(), y.iloc[:n_tr].copy(), | ||
y.iloc[n_tr:].copy()] | ||
m_lgb = LinearForecaster().fit(x_tr, y_tr) | ||
y_hat = m_lgb.predict(x_te) | ||
|
||
for i in range(0, 24*10, 24): | ||
plt.figure() | ||
plt.plot(y_te.iloc[i], label='y_te') | ||
plt.plot(y_hat.iloc[i], label='y_hat') | ||
plt.show() | ||
|
||
tr = umap.UMAP(n_neighbors=20,learning_rate=0.1).fit(y_tr) | ||
y_te_tr = tr.transform(y_te) | ||
y_hat_tr = tr.transform(y_hat) | ||
|
||
|
||
plt.figure() | ||
xy = y_hat_tr | ||
uv = y_te_tr - y_hat_tr | ||
plt.quiver(*xy.T, *uv.T, | ||
np.sum(uv ** 2, axis=1) ** 0.5, angles='xy') | ||
grid_x, grid_y = np.meshgrid(np.linspace(xy[:, 0].min(), xy[:, 0].max(), 20), | ||
np.linspace(xy[:, 1].min(), xy[:, 1].max(), 20)) | ||
# Interpolate components | ||
u_grid = griddata(xy, uv[:, 0], (grid_x, grid_y), method='cubic') | ||
v_grid = griddata(xy, uv[:, 1], (grid_x, grid_y), method='cubic') | ||
plt.streamplot(grid_x, grid_y, u_grid, v_grid, color=np.sqrt(u_grid ** 2 + v_grid ** 2), cmap='viridis') | ||
plt.show() | ||
|
||
|
||
|
||
# plot a vectorial field using y_te.iloc[:, t] and y_hat.iloc[:, t] as starts and ends of the vectors | ||
# color it proportionally to the error (length of vector) | ||
tuples = np.random.randint(0, y_tr.shape[1], (10, 2)) | ||
for t in tuples: | ||
plt.figure() | ||
#plt.scatter(*y_te.iloc[:, t].values.T, s=1, c='b') | ||
#plt.scatter(*y_hat.iloc[:, t].values.T, s=10, c='r') | ||
xy = y_hat.iloc[:, t].values | ||
uv = y_te.iloc[:, t].values - y_hat.iloc[:, t].values | ||
plt.quiver(*xy.T, *uv.T, y_hat.index.hour, angles='xy', alpha=0.5) | ||
|
||
grid_x, grid_y = np.meshgrid(np.linspace(xy[:, 0].min(), xy[:, 0].max(), 20), | ||
np.linspace(xy[:, 1].min(), xy[:, 1].max(), 20)) | ||
# Interpolate components | ||
u_grid = griddata(xy, uv[:, 0], (grid_x, grid_y), method='cubic') | ||
v_grid = griddata(xy, uv[:, 1], (grid_x, grid_y), method='cubic') | ||
plt.streamplot(grid_x, grid_y, u_grid, v_grid, color=np.sqrt(u_grid ** 2 + v_grid ** 2), cmap='viridis') | ||
|
||
plt.title('Error, tuple: {}'.format(t)) | ||
plt.show() | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters