Intelligent Childcare Center Safety Monitoring System
Using Multi-Object Tracking & Computer Vision Technology.
A system that analyzes the daily life of a child at a childcare center.
CCTV 원본 | ➡️ | 객체/행동 분석 | ➡️ | BEV |
---|---|---|---|---|
➡️ | ➡️ |
- OS : Linux Ubuntu 20.04.6 LTS
- CPU : Intel i9-9900KF
- RAM : 64G
- GPU : RTX 2080Ti 11GB
- CUDA : 11.7
- Python 3.11.5
- Flask 2.2.2
- WatchDog 2.1.6
- MySQL 5.7.24
- packagelist.txt
- requirements.txt
File Structure
koren
┣ code
┃ ┣ BTmapping
┃ ┣ ByteTrack
┃ ┣ KOREN_Flask
┃ ┃ ┣ profile_image
┃ ┃ ┃ ┗ test
┃ ┃ ┃ ┃ ┗ 홍길
┃ ┃ ┃ ┃ ┃ ┣ 1.png
┃ ┃ ┃ ┃ ┃ ┗ back.png
┃ ┃ ┣ app.py
┃ ┃ ┣ db_info.json
┃ ┃ ┗ requirements.txt
┃ ┣ automatize
┃ ┃ ┣ BEV.py
┃ ┃ ┣ automation.py
┃ ┃ ┣ automation_v2.py
┃ ┃ ┣ ava_action_list.pbtxt
┃ ┃ ┣ behavior_prediction.py
┃ ┃ ┣ heatmap.py
┃ ┃ ┣ kinetics_classnames.json
┃ ┃ ┣ mapping.py
┃ ┃ ┣ model_test.ipynb
┃ ┃ ┣ motBetween.py
┃ ┃ ┣ motToTxt.py
┃ ┃ ┣ move_ana.py
┃ ┃ ┣ ori_behavior_prediction.py
┃ ┃ ┣ test_run.sh
┃ ┃ ┣ transBT_modify.py
┃ ┃ ┗ your_info.json
┃ ┣ CH01_20230831162648_163118.mp4
┃ ┣ ava_action_list.pbtxt
┃ ┣ model_test.ipynb
┃ ┣ packagelist.txt
┃ ┣ requirements.txt
┃ ┗ theatre.webm
┃
┣ KOREN
┃ ┣ Bluetooth
┃ ┃ ┗ 2023
┃ ┃ ┃ ┗ 10
┃ ┃ ┃ ┃ ┣ 15
┃ ┃ ┃ ┃ ┃ ┗ transBT.txt
┃ ┃ ┃ ┃ ┗ 21
┃ ┃ ┃ ┃ ┃ ┗ transBT.txt
┃ ┗ CCTV
┃ ┃ ┗ ch02
┃ ┃ ┃ ┗ 2023
┃ ┃ ┃ ┃ ┗ 10
┃ ┃ ┃ ┃ ┃ ┣ 15
┃ ┃ ┃ ┃ ┃ ┃ ┗ 20230831162648.mp4
┃ ┃ ┃ ┃ ┃ ┗ 21
┃ ┃ ┃ ┃ ┃ ┃ ┗ 20231021144315.mp4
┃
┣ Output
┃ ┣ Action
┃ ┃ ┗ ch02
┃ ┃ ┃ ┗ 2023
┃ ┃ ┃ ┃ ┗ 10
┃ ┃ ┃ ┃ ┃ ┣ 15
┃ ┃ ┃ ┃ ┃ ┃ ┣ 20230831162648.mp4
┃ ┃ ┃ ┃ ┃ ┃ ┗ 20230831162648.txt
┃ ┃ ┃ ┃ ┃ ┗ 21
┃ ┃ ┃ ┃ ┃ ┃ ┣ 20231021144315.mp4
┃ ┃ ┃ ┃ ┃ ┃ ┗ 20231021144315.txt
┃ ┣ Analysis
┃ ┃ ┣ ch02
┃ ┃ ┃ ┗ 2023
┃ ┃ ┃ ┃ ┗ 10
┃ ┃ ┃ ┃ ┃ ┣ 15
┃ ┃ ┃ ┃ ┃ ┃ ┣ 20230831162648
┃ ┃ ┃ ┃ ┃ ┃ ┃ ┣ heatmap
┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┣ HeatMap_kid1.jpg
┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┣ HeatMap_kid2.jpg
┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┣ HeatMap_kid3.jpg
┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┣ HeatMap_kid4.jpg
┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┗ HeatMap_kid5.jpg
┃ ┃ ┃ ┃ ┃ ┃ ┃ ┗ path
┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┣ path_kid1.jpg
┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┣ path_kid2.jpg
┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┣ path_kid3.jpg
┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┣ path_kid4.jpg
┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┗ path_kid5.jpg
┃ ┃ ┃ ┃ ┃ ┃ ┣ 20230831162648_moveDistance.csv
┃ ┃ ┃ ┃ ┃ ┃ ┣ 20230831162648_useKcal.csv
┃ ┃ ┃ ┃ ┃ ┃ ┣ 20230831162648_video_bev.csv
┃ ┃ ┃ ┃ ┃ ┃ ┗ 20230831162648_video_bev_Interpolation.csv
┃ ┃ ┃ ┃ ┃ ┗ 21
┃ ┃ ┃ ┃ ┃ ┃ ┣ 20231021144315
┃ ┃ ┃ ┃ ┃ ┃ ┃ ┣ heatmap
┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┣ HeatMap_kid1.jpg
┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┣ HeatMap_kid2.jpg
┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┣ HeatMap_kid3.jpg
┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┣ HeatMap_kid4.jpg
┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┗ HeatMap_kid5.jpg
┃ ┃ ┃ ┃ ┃ ┃ ┃ ┗ path
┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┣ path_kid1.jpg
┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┣ path_kid2.jpg
┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┣ path_kid3.jpg
┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┣ path_kid4.jpg
┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┗ path_kid5.jpg
┃ ┃ ┃ ┃ ┃ ┃ ┣ 20231021144315_moveDistance.csv
┃ ┃ ┃ ┃ ┃ ┃ ┣ 20231021144315_useKcal.csv
┃ ┃ ┃ ┃ ┃ ┃ ┣ 20231021144315_video_bev.csv
┃ ┃ ┃ ┃ ┃ ┃ ┗ 20231021144315_video_bev_Interpolation.csv
┃ ┃ ┗ ch04
┃ ┃ ┃ ┗ 2023
┃ ┃ ┃ ┃ ┗ 10
┃ ┃ ┃ ┃ ┃ ┗ 15
┃ ┃ ┃ ┃ ┃ ┃ ┗ 20230831162648
┃ ┃ ┃ ┃ ┃ ┃ ┃ ┣ heatmap
┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┣ HeatMap_kid1.jpg
┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┣ HeatMap_kid2.jpg
┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┣ HeatMap_kid3.jpg
┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┣ HeatMap_kid4.jpg
┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┗ HeatMap_kid5.jpg
┃ ┃ ┃ ┃ ┃ ┃ ┃ ┗ path
┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┣ path_kid1.jpg
┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┣ path_kid2.jpg
┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┣ path_kid3.jpg
┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┣ path_kid4.jpg
┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┗ path_kid5.jpg
┃ ┣ BEV
┃ ┃ ┣ ch02
┃ ┃ ┃ ┗ 2023
┃ ┃ ┃ ┃ ┗ 10
┃ ┃ ┃ ┃ ┃ ┣ 15
┃ ┃ ┃ ┃ ┃ ┃ ┣ 20230831162648_video_bev.mp4
┃ ┃ ┃ ┃ ┃ ┃ ┗ 20230831162648_video_bev.txt
┃ ┃ ┃ ┃ ┃ ┗ 21
┃ ┃ ┃ ┃ ┃ ┃ ┣ 20231021144315_video_bev.mp4
┃ ┃ ┃ ┃ ┃ ┃ ┗ 20231021144315_video_bev.txt
┃ ┃ ┗ ch04
┃ ┃ ┃ ┗ 2023
┃ ┃ ┃ ┃ ┗ 10
┃ ┃ ┃ ┃ ┃ ┗ 15
┃ ┃ ┃ ┃ ┃ ┃ ┣ 20230831162648_video_bev.mp4
┃ ┃ ┃ ┃ ┃ ┃ ┗ 20230831162648_video_bev.txt
┃ ┣ Bluetooth
┃ ┃ ┗ 2023
┃ ┃ ┃ ┗ 10
┃ ┃ ┃ ┃ ┣ 15
┃ ┃ ┃ ┃ ┃ ┗ 20230831162648_transBT_modified.txt
┃ ┃ ┃ ┃ ┗ 21
┃ ┃ ┃ ┃ ┃ ┗ 20231021144315_transBT_modified.txt
┃ ┣ MOT
┃ ┃ ┗ ch02
┃ ┃ ┃ ┗ 2023
┃ ┃ ┃ ┃ ┗ 10
┃ ┃ ┃ ┃ ┃ ┣ 15
┃ ┃ ┃ ┃ ┃ ┃ ┣ 20230831162648.mp4
┃ ┃ ┃ ┃ ┃ ┃ ┣ 20230831162648.txt
┃ ┃ ┃ ┃ ┃ ┃ ┗ log.txt
┃ ┃ ┃ ┃ ┃ ┗ 21
┃ ┃ ┃ ┃ ┃ ┃ ┣ 20231021144315.mp4
┃ ┃ ┃ ┃ ┃ ┃ ┣ 20231021144315.txt
┃ ┃ ┃ ┃ ┃ ┃ ┣ log.txt
┃ ┃ ┃ ┃ ┃ ┃ ┗ ori20231021144315.txt
┃ ┣ Mapping
┃ ┃ ┗ ch02
┃ ┃ ┃ ┗ 2023
┃ ┃ ┃ ┃ ┗ 10
┃ ┃ ┃ ┃ ┃ ┣ 15
┃ ┃ ┃ ┃ ┃ ┃ ┗ 20230831162648_mapping.txt
┃ ┃ ┃ ┃ ┃ ┗ 21
┃ ┃ ┃ ┃ ┃ ┃ ┗ 20231021144315_mapping.txt
┃ ┗ Trans
┃ ┃ ┗ ch02
┃ ┃ ┃ ┗ 2023
┃ ┃ ┃ ┃ ┗ 10
┃ ┃ ┃ ┃ ┃ ┣ 15
┃ ┃ ┃ ┃ ┃ ┃ ┣ 20230831162648_MOTbetween.txt
┃ ┃ ┃ ┃ ┃ ┃ ┗ 20230831162648_transMOT.txt
┃ ┃ ┃ ┃ ┃ ┗ 21
┃ ┃ ┃ ┃ ┃ ┃ ┣ 20231021144315_MOTbetween.txt
┃ ┃ ┃ ┃ ┃ ┃ ┗ 20231021144315_transMOT.txt
Please follow the instructions below to install the required packages.
- Clone this repository
git clone https://github.com/sts07142/GuardianWatch.git
1-1. Clone ByteTrack repository
cd GuardianWatch/koren/code
git clone https://github.com/ifzhang/ByteTrack.git
- Install Package
conda create --name guardianwatch python=3.11 -y
conda activate guardianwatch
cd GuardianWatch/koren/code
pip install -r requirements.txt
conda install --file packagelist.txt
- Fill folder with
your own data
This repo offers except videos.(You can `NOT` operate with our given data.)
Check this repo's data structure to fill in your own data.
You should fill in your `Bluetooth data` & `Video data`.
Flow Numbers
1️⃣ 2️⃣ 3️⃣ 4️⃣ 5️⃣
- Setting RTSP to CCTV video & Bluetooth
1️⃣
CCTV Video RTSP
Saving in GuardianWatch/koren/KOREN/CCTV/`channel_num`/`year`/`month`/`day`/`yyyyMMddHHmmss.mp4`
example) GuardianWatch/koren/KOREN/CCTV/ch02/2023/10/15/20231015142134.mp4
-----------------------------------------------------------------------------------------------------
Collect Bluetooth RSSI
Use Bluetooth APP to get RSSI values & time
# Download APP in Equipment to Collect
git clone https://github.com/sts07142/Bluetooth
- Execute WatchDog system to observer CCTV video and Automatic System
2️⃣,3️⃣
python3 GuardianWatch/koren/code/automatize/automation.py
- Flask server
4️⃣
cd GuardianWatch/koren/code/KOREN_Flask
python3 app.py
- GuardianWatch APP
5️⃣
git clone https://github.com/sts07142/guardianwatch_app
-
Smart Watch : Samsung Galaxy watch 5 (wifi model)
-
Behavior: SlowR50
- Dataset : AVA Kinetics 400