This is a pytorch implementation of DeepLabV3 with VoVNet Backbone Networks. This code based on pytorch implementation of DeepLabV3.pytorch.
- Memory efficient
- Better performance
- Faster speed
- For fair comparison, totally SAME training setup except for backbone
- 50 epoch
- 0.007 base_lr
- 16 batch size
- same ASSP module & parameters
- V100 GPU
- pytorch 1.1.0a0+3752916
- CUDA v10
- cuDnn v7.3
Backbone | mIoU | inference time (ms) | Memory usage (MB) | Energy Efficiency (J/frame) | DOWNLOAD |
---|---|---|---|---|---|
ResNet-50 | 74.27 | 24 | 2193 | 4.1 | link |
DenseNet-201 | 75.63 | 50 | 3945 | 7 | link |
VoV-39 | 75.71 | 19 | 1901 | 3.1 | link |
ResNet-101 | 76.81 | 32 | 2865 | 15.8 | link |
DenseNet-161 | 76.13 | 49 | 4523 | 8.3 | link |
VoV-57 | 77.4 | 25 | 2251 | 4.2 | link |
git clone https://github.com/stigma0617/VoVNet-DeepLabV3.git
cd VoVNet-DeepLabV3
mkdir -p data/pretrained
cd data/pretrained
wget https://www.dropbox.com/s/b826phjle6kbamu/vovnet57_statedict_norm.pth
wget https://www.dropbox.com/s/s7f4vyfybyc9qpr/vovnet39_statedict_norm.pth
cd ~/VoVNet-DeeplabV3/data
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
tar -xf VOCtrainval_11-May-2012.tar
cd VOCdevkit/VOC2012/
wget http://cs.jhu.edu/~cxliu/data/SegmentationClassAug.zip
wget http://cs.jhu.edu/~cxliu/data/SegmentationClassAug_Visualization.zip
wget http://cs.jhu.edu/~cxliu/data/list.zip
unzip SegmentationClassAug.zip
unzip SegmentationClassAug_Visualization.zip
unzip list.zip
Specifying a backbone network with --backbone
,
For VoVNet-39, --backbone vovnet39
python main.py --train --exp bn_lr7e-3 --epochs 50 --base_lr 0.007 --backbone vovnet39
use the same command except delete --train
wget https://www.dropbox.com/s/oqqozntgrowmfb1/deeplab_vovnet39_pascal_v3_bn_lr7e-3_epoch50.pth -P data/
python main.py --exp bn_lr7e-3 --epochs 50 --base_lr 0.007 --backbone vovnet39