-
Notifications
You must be signed in to change notification settings - Fork 22
IMDB Dataset
All Datasets: boost-starai/BoostSRL-Datasets
by: Nandini Ramanan, Alexander L. Hayes
<< Previous Page | BoostSRL Wiki | "Cora Dataset" >>
Internet Movie Database (IMDB) is an online database of movies, television shows, the actors/actresses that star in them, and the people that make them.
Target:
female_gender
Table of Contents - BoostSRL Wiki
Download: IMDB.zip (29.6 KB)
-
md5sum
: 70f85ae348531b3103008d4e6acfa379 -
sha256sum
: fe636348146f9f0ef0c2a081515abf543e3db9bdab1b441575955095c41e4c4f
Table of Contents - BoostSRL Wiki
Linux/Mac:
- After downloading, unzip IMDB.zip
unzip IMDB.zip
- If you're using a jar file, move it into the IMDB directory:
mv (jar file) IMDB/
- Learning:
java -jar BoostSRL.jar -l -train train/ -target female_gender -trees 10
- Inference:
java -jar BoostSRL.jar -i -test test/ -model train/models/ -target female_gender -trees 10
Windows:
(Coming soon)
Table of Contents - BoostSRL Wiki
setParam: treeDepth=3.
setParam: nodeSize=3.
setParam: numOfClauses=8.
setParam: numOfCycles=8.
setParam: recursion=true.
setParam: lineSearch=true.
setParam: resampleNegs=true.
mode: actor(+person).
mode: recursive_actor(`person).
mode: recursive_movie(+movie, `person).
mode: recursive_movie(`movie, +person).
mode: movie(+movie, +person).
mode: movie(+movie, -person).
mode: movie(-movie, +person).
mode: female_gender(+person).
mode: recursive_female_gender(`person).
mode: genre(+person, +genre).
mode: genre(+person, #genre).
mode: genre(+person, -genre).
mode: genre(-person, +genre).
mode: recursive_genre(+person, `genre).
mode: recursive_genre(`person, +genre).
mode: workedunder(+person, +person).
mode: workedunder(+person, -person).
mode: workedunder(-person, +person).
mode: recursive_workedunder(+person, `person).
mode: recursive_workedunder(`person, +person).
okIfUnknown: recursive_actor/1.
okIfUnknown: recursive_movie/2.
okIfUnknown: recursive_female_gender/1.
okIfUnknown: recursive_genre/2.
okIfUnknown: recursive_workedunder/2.
okIfUnknown: movie_2_1_genre/3.
okIfUnknown: workedunder_2_1_genre/3.
okIfUnknown: workedunder_1_1_gender/2.
okIfUnknown: movie_2_1_gender/2.
usePrologVariables: true.
mode: movie_2_1_genre(+movie, +genre, #count).
mode: movie_2_1_genre(+movie, #genre, #count).
mode: movie_2_1_gender(+movie, #count).
mode: workedunder_2_1_genre(+person, +genre, #count).
mode: workedunder_2_1_genre(+person, #genre, #count).
mode: workedunder_1_1_gender(+person, #count).
mode: movie_1(+person, #count).
mode: movie_2(+movie, #count).
mode: workedunder_1(+person, #count).
mode: workedunder_2(+person, #count).
precompute:
movie_2_1_genre(M, G, C) :- movie(M,P1), genre(P1,G), all(P, movie(M, P)^genre(P,G), AllP), C is length(AllP).
precompute:
movie_2_1_gender(M, C) :- movie(M,P1), female_gender(P1), all(P, movie(M, P)^female_gender(P), AllP), C is length(AllP).
precompute:
workedunder_2_1_genre(M, G, C) :- workedunder(M,P1), genre(P1,G), all(P, workedunder(M, P)^genre(P,G), AllP), C is length(AllP).
precompute:
workedunder_1_1_gender(M, C) :- workedunder(P1,M), female_gender(P1), all(P, workedunder(P, M)^female_gender(P), AllP), C is length(AllP).
precompute:
movie_1(P,C) :- movie(M,P), all(M, movie(M,P), AllM), C is length(AllM).
precompute:
movie_2(M,C) :- movie(M,P), all(P, movie(M,P), AllM), C is length(AllM).
precompute:
workedunder_1(D, C) :- workedunder(A,D), all(A, workedunder(A,D), AllA), C is length(AllA).
precompute:
workedunder_2(A, C) :- workedunder(A,D), all(D, workedunder(A,D), AllD), C is length(AllD).
Table of Contents - BoostSRL Wiki
<< Previous Page | BoostSRL Wiki | "Cora Dataset" >>
BoostSRL Wiki
Home
BoostSRL Basics
- Getting Started
- File Structure
- Basic Usage Parameters
- Advanced Usage Parameters
- Basic Modes Guide
- Advanced Modes Guide
Deep dive into BoostSRL
- Default (RDN-Boost)
- MLN-Boost
- Regression
- Cost-sensitive SRL
- Learning with Advice
- Approximate Counting
- One-class Classification (coming soon)
- Discretization of Continuous Valued Attributes
- Lifted Relational Random Walks
- Grounded Relational Random Walks
Datasets
Applications of BoostSRL