Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add Slakh #133

Merged
merged 8 commits into from
Aug 7, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions .github/workflows/tox.yml
Original file line number Diff line number Diff line change
Expand Up @@ -30,13 +30,13 @@ jobs:
python-version: ${{ matrix.py }}
- uses: actions/checkout@v3
- name: Install soundlibs Ubuntu
run: sudo apt-get update && sudo apt-get install --no-install-recommends -y --fix-missing pkg-config libsndfile1 sox
run: sudo apt-get update && sudo apt-get install --no-install-recommends -y --fix-missing pkg-config libsndfile1 sox ffmpeg
if: matrix.os == 'ubuntu-latest'
- name: Install soundlibs MacOs
run: brew install libsndfile llvm libomp sox
run: brew install libsndfile llvm libomp sox ffmpeg
if: matrix.os == 'macos-latest-xlarge'
- name: Install soundlibs Windows
run: choco install libsndfile sox.portable
run: choco install libsndfile sox.portable flac ffmpeg
if: matrix.os == 'windows-latest'
- name: Upgrade pip
run: python -m pip install -U pip
Expand Down
2 changes: 1 addition & 1 deletion MANIFEST.in
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
include *.txt tox.ini *.rst *.md LICENSE
include catalog-info.yaml
include Dockerfile .dockerignore
recursive-include tests *.py *.wav *.npz *.jams *.zip *.midi *.csv *.json
recursive-include tests *.py *.wav *.npz *.jams *.zip *.mid *.flac *.yaml *.json
recursive-include basic_pitch *.py *.md
recursive-include basic_pitch/saved_models *.index *.pb variables.data* *.mlmodel *.json *.onnx *.tflite *.bin
223 changes: 223 additions & 0 deletions basic_pitch/data/datasets/slakh.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,223 @@
#!/usr/bin/env python
# encoding: utf-8
#
# Copyright 2024 Spotify AB
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import logging
import os
import time

from typing import List, Tuple, Any

import apache_beam as beam
import mirdata

from basic_pitch.data import commandline, pipeline


class SlakhFilterInvalidTracks(beam.DoFn):
DOWNLOAD_ATTRIBUTES = ["audio_path", "metadata_path", "midi_path"]

def __init__(self, source: str):
self.source = source

def setup(self) -> None:
import mirdata

self.slakh_remote = mirdata.initialize("slakh", data_home=self.source)
self.filesystem = beam.io.filesystems.FileSystems()

def process(self, element: Tuple[str, str]) -> Any:
import tempfile

import apache_beam as beam
import ffmpeg

from basic_pitch.constants import (
AUDIO_N_CHANNELS,
AUDIO_SAMPLE_RATE,
)

track_id, split = element
if split == "omitted":
return None

logging.info(f"Processing (track_id, split): ({track_id}, {split})")

track_remote = self.slakh_remote.track(track_id)

with tempfile.TemporaryDirectory() as local_tmp_dir:
slakh_local = mirdata.initialize("slakh", local_tmp_dir)
track_local = slakh_local.track(track_id)

for attr in self.DOWNLOAD_ATTRIBUTES:
source = getattr(track_remote, attr)
dest = getattr(track_local, attr)
if not dest:
return None
logging.info(f"Downloading {attr} from {source} to {dest}")
os.makedirs(os.path.dirname(dest), exist_ok=True)
with self.filesystem.open(source) as s, open(dest, "wb") as d:
d.write(s.read())

if track_local.is_drum:
return None

local_wav_path = "{}_tmp.wav".format(track_local.audio_path)
try:
ffmpeg.input(track_local.audio_path).output(
local_wav_path, ar=AUDIO_SAMPLE_RATE, ac=AUDIO_N_CHANNELS
).run()
except Exception as e:
logging.info(f"Could not process {local_wav_path}. Exception: {e}")
return None

# if there are no notes, skip this track
if track_local.notes is None or len(track_local.notes.intervals) == 0:
return None

yield beam.pvalue.TaggedOutput(split, track_id)


class SlakhToTfExample(beam.DoFn):
DOWNLOAD_ATTRIBUTES = ["audio_path", "metadata_path", "midi_path"]

def __init__(self, source: str, download: bool) -> None:
self.source = source
self.download = download

def setup(self) -> None:
import apache_beam as beam
import mirdata

self.slakh_remote = mirdata.initialize("slakh", data_home=self.source)
self.filesystem = beam.io.filesystems.FileSystems() # TODO: replace with fsspec
if self.download:
self.slakh_remote.download()

def process(self, element: List[str]) -> List[Any]:
import tempfile

import numpy as np
import ffmpeg

from basic_pitch.constants import (
AUDIO_N_CHANNELS,
AUDIO_SAMPLE_RATE,
FREQ_BINS_CONTOURS,
FREQ_BINS_NOTES,
ANNOTATION_HOP,
N_FREQ_BINS_NOTES,
N_FREQ_BINS_CONTOURS,
)
from basic_pitch.data import tf_example_serialization

logging.info(f"Processing {element}")
batch = []

for track_id in element:
track_remote = self.slakh_remote.track(track_id)

with tempfile.TemporaryDirectory() as local_tmp_dir:
slakh_local = mirdata.initialize("slakh", local_tmp_dir)
track_local = slakh_local.track(track_id)

for attr in self.DOWNLOAD_ATTRIBUTES:
source = getattr(track_remote, attr)
dest = getattr(track_local, attr)
logging.info(f"Downloading {attr} from {source} to {dest}")
os.makedirs(os.path.dirname(dest), exist_ok=True)
with self.filesystem.open(source) as s, open(dest, "wb") as d:
d.write(s.read())

local_wav_path = "{}_tmp.wav".format(track_local.audio_path)
ffmpeg.input(track_local.audio_path).output(
local_wav_path, ar=AUDIO_SAMPLE_RATE, ac=AUDIO_N_CHANNELS
).run()

duration = float(ffmpeg.probe(local_wav_path)["format"]["duration"])
time_scale = np.arange(0, duration + ANNOTATION_HOP, ANNOTATION_HOP)
n_time_frames = len(time_scale)

note_indices, note_values = track_local.notes.to_sparse_index(time_scale, "s", FREQ_BINS_NOTES, "hz")
onset_indices, onset_values = track_local.notes.to_sparse_index(
time_scale, "s", FREQ_BINS_NOTES, "hz", onsets_only=True
)
contour_indices, contour_values = track_local.multif0.to_sparse_index(
time_scale, "s", FREQ_BINS_CONTOURS, "hz"
)

batch.append(
tf_example_serialization.to_transcription_tfexample(
track_id,
"slakh",
local_wav_path,
note_indices,
note_values,
onset_indices,
onset_values,
contour_indices,
contour_values,
(n_time_frames, N_FREQ_BINS_NOTES),
(n_time_frames, N_FREQ_BINS_CONTOURS),
)
)

logging.info(f"Finished processing batch of length {len(batch)}")
return [batch]


def create_input_data() -> List[Tuple[str, str]]:
slakh = mirdata.initialize("slakh")
return [(track_id, track.data_split) for track_id, track in slakh.load_tracks().items()]


def main(known_args: argparse.Namespace, pipeline_args: List[str]) -> None:
time_created = int(time.time())
destination = commandline.resolve_destination(known_args, time_created)
input_data = create_input_data()

pipeline_options = {
"runner": known_args.runner,
"job_name": f"slakh-tfrecords-{time_created}",
"machine_type": "e2-standard-4",
"num_workers": 25,
"disk_size_gb": 128,
"experiments": ["use_runner_v2"],
"save_main_session": True,
"sdk_container_image": known_args.sdk_container_image,
"job_endpoint": known_args.job_endpoint,
"environment_type": "DOCKER",
"environment_config": known_args.sdk_container_image,
}
pipeline.run(
pipeline_options,
pipeline_args,
input_data,
SlakhToTfExample(known_args.source, download=True),
SlakhFilterInvalidTracks(known_args.source),
destination,
known_args.batch_size,
)


if __name__ == "__main__":
parser = argparse.ArgumentParser()
commandline.add_default(parser, os.path.basename(os.path.splitext(__file__)[0]))
commandline.add_split(parser)
known_args, pipeline_args = parser.parse_known_args() # sys.argv)

main(known_args, pipeline_args)
3 changes: 2 additions & 1 deletion basic_pitch/data/download.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,16 +22,17 @@
from basic_pitch.data.datasets.ikala import main as ikala_main
from basic_pitch.data.datasets.maestro import main as maestro_main
from basic_pitch.data.datasets.medleydb_pitch import main as medleydb_pitch_main
from basic_pitch.data.datasets.slakh import main as slakh_main

logger = logging.getLogger()
logger.setLevel(logging.INFO)


DATASET_DICT = {
"guitarset": guitarset_main,
"ikala": ikala_main,
"maestro": maestro_main,
"medleydb_pitch": medleydb_pitch_main,
"slakh": slakh_main,
}


Expand Down
3 changes: 2 additions & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -57,7 +57,8 @@ data = [
"apache_beam",
"mirdata",
"smart_open",
"sox"
"sox",
"ffmpeg-python"
]
test = [
"basic_pitch[data]",
Expand Down
59 changes: 6 additions & 53 deletions tests/data/test_maestro.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,13 +14,9 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import numpy as np
import os
import pathlib
import wave

from mido import MidiFile, MidiTrack, Message
from typing import List

import apache_beam as beam
Expand All @@ -33,6 +29,8 @@
)
from basic_pitch.data.pipeline import WriteBatchToTfRecord

from utils import create_mock_wav, create_mock_midi

RESOURCES_PATH = pathlib.Path(__file__).parent.parent / "resources"
MAESTRO_TEST_DATA_PATH = RESOURCES_PATH / "data" / "maestro"

Expand All @@ -42,57 +40,13 @@
GT_15M_TRACK_ID = "2004/MIDI-Unprocessed_SMF_02_R1_2004_01-05_ORIG_MID--AUDIO_02_R1_2004_05_Track05_wav"


def create_mock_wav(output_fpath: str, duration_min: int) -> None:
duration_seconds = duration_min * 60
sample_rate = 44100
n_channels = 2 # Stereo
sampwidth = 2 # 2 bytes per sample (16-bit audio)

# Generate a silent audio data array
num_samples = duration_seconds * sample_rate
audio_data = np.zeros((num_samples, n_channels), dtype=np.int16)

# Create the WAV file
with wave.open(str(output_fpath), "w") as wav_file:
wav_file.setnchannels(n_channels)
wav_file.setsampwidth(sampwidth)
wav_file.setframerate(sample_rate)
wav_file.writeframes(audio_data.tobytes())

logging.info(f"Mock {duration_min}-minute WAV file '{output_fpath}' created successfully.")


def create_mock_midi(output_fpath: str) -> None:
# Create a new MIDI file with one track
mid = MidiFile()
track = MidiTrack()
mid.tracks.append(track)

# Define a sequence of notes (time, type, note, velocity)
notes = [
(0, "note_on", 60, 64), # C4
(500, "note_off", 60, 64),
(0, "note_on", 62, 64), # D4
(500, "note_off", 62, 64),
]

# Add the notes to the track
for time, type, note, velocity in notes:
track.append(Message(type, note=note, velocity=velocity, time=time))

# Save the MIDI file
mid.save(output_fpath)

logging.info(f"Mock MIDI file '{output_fpath}' created successfully.")


def test_maestro_to_tf_example(tmp_path: pathlib.Path) -> None:
mock_maestro_home = tmp_path / "maestro"
mock_maestro_ext = mock_maestro_home / "2004"
mock_maestro_ext.mkdir(parents=True, exist_ok=True)

create_mock_wav(str(mock_maestro_ext / (TRAIN_TRACK_ID.split("/")[1] + ".wav")), 3)
create_mock_midi(str(mock_maestro_ext / (TRAIN_TRACK_ID.split("/")[1] + ".midi")))
create_mock_wav(mock_maestro_ext / f"{TRAIN_TRACK_ID.split('/')[1]}.wav", 3)
create_mock_midi(mock_maestro_ext / f"{TRAIN_TRACK_ID.split('/')[1]}.midi")

output_dir = tmp_path / "outputs"
output_dir.mkdir(parents=True, exist_ok=True)
Expand Down Expand Up @@ -122,7 +76,7 @@ def test_maestro_invalid_tracks(tmp_path: pathlib.Path) -> None:
input_data = [(TRAIN_TRACK_ID, "train"), (VALID_TRACK_ID, "validation"), (TEST_TRACK_ID, "test")]

for track_id, _ in input_data:
create_mock_wav(str(mock_maestro_ext / (track_id.split("/")[1] + ".wav")), 3)
create_mock_wav(mock_maestro_ext / f"{track_id.split('/')[1]}.wav", 3)

split_labels = set([e[1] for e in input_data])
with TestPipeline() as p:
Expand Down Expand Up @@ -154,8 +108,7 @@ def test_maestro_invalid_tracks_over_15_min(tmp_path: pathlib.Path) -> None:
mock_maestro_ext = mock_maestro_home / "2004"
mock_maestro_ext.mkdir(parents=True, exist_ok=True)

mock_fpath = mock_maestro_ext / (GT_15M_TRACK_ID.split("/")[1] + ".wav")
create_mock_wav(str(mock_fpath), 16)
create_mock_wav(mock_maestro_ext / f"{GT_15M_TRACK_ID.split('/')[1]}.wav", 16)

input_data = [(GT_15M_TRACK_ID, "train")]
split_labels = set([e[1] for e in input_data])
Expand Down
Loading
Loading