Simulation of colliding Bose-Einstein condensates in producing momentum-correlated pairs of atoms. S-wave scattering and T-F approximation are used in the simulation model. Scattering halo qualitatively resembling experiments are produced and data analysis is undertaken to quantify number squeezing and momentum correlation.
- halo.m
- halo_sim.m
- halo_analyse.m (RENAME this file)
- g2_BB.m
- g2_histo.m
- g2_gauss_fit.m
- g2_ogren_kheruntsyan.m
- pairsum.m
- ballfilter.m
- Configure simulation parameters in halo.m: N_sim, N_halo, QE, N_0, P_dist, w_trap, zone_frac, Nz_polar, Nz_azim
- Run halo.m script
Explain what the script does - Configure parameters in g2_BB.m: p_delta
- Run g2_BB.m
Explain what the script does - Run g2_gauss_fit.m
explain - Run g2_ogren_kheruntsyan.m
explain
- Raman/Bragg laser wavelength: 1083nm
- He* s-wave scattering length: a_He = 7.5nm
- He4 mass: m_He = 6.65e-27 kg
- Width of the momentum distribution of the source condensate (TF approx) along direction i w(S)_i =~ 1.99/R_i
- Thomas-Fermi radius: R_i = sqrt(2mu/(momega_i^2))
- Chemical potential: mu = (15N_0a/abar)^0.4hbaromega_avg/2
- Characteristic length of oscillator: abar = sqrt(hbar/(m*omega_avg))
- Oscillator frequency: omega_avg = (omega_1omega_2omega_3)^(1/3)
- Condensate population: N_0