Skip to content

Commit

Permalink
update agents
Browse files Browse the repository at this point in the history
  • Loading branch information
XuhuiZhou committed Jul 12, 2024
1 parent 1ee1232 commit 3679555
Show file tree
Hide file tree
Showing 6 changed files with 156 additions and 120 deletions.
125 changes: 5 additions & 120 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -45,57 +45,21 @@ Sotopia is an open-ended social learning environment that allows agents to inter
## Help
See [documentation](https://docs.sotopia.world) for more details.


## Get started
### Use on Google Colab

If you want to try it out on Google Colab first, please check out our Colab Tutorial Series:

<ol>
<li> Basic
<ol>
<li> <a href="https://colab.research.google.com/github/sotopia-lab/sotopia/blob/main/notebooks/tutorials/1.1-setup.ipynb">1.1 Playing with Sotopia in a Google Colab Notebook</a> </li>
<li> <a href="https://colab.research.google.com/github/sotopia-lab/sotopia/blob/main/notebooks/tutorials/1.2-browse-data.ipynb">1.2 Browsing sotopia data</a> </li>
</ol>
</li>
<li>
Building your own social agent (coming soon!)
</li>
</ol>

### Install locally
This package supports Python 3.11 and above. In one line,
`pip install sotopia` or `pip install uv; uv pip install sotopia`.
We recommend using a virtual environment, e.g. with anaconda3: `conda create -n sotopia python=3.11; conda activate sotopia; curl -sSL https://install.python-poetry.org | python3`.

Or from scratch, use a virtual environment, e.g. with anaconda3: `conda create -n sotopia python=3.11; conda activate sotopia; curl -sSL https://install.python-poetry.org | python3`. Then, install the requirements and this package.
```bash
poetry install
```
Then:
`python -m pip install sotopia; sotopia_install`

This will setup the necessary environment variables and download the necessary data.

OpenAI key is required to run the code. Please set the environment variable `OPENAI_API_KEY` to your key. The recommend way is to add the key to the conda environment:
```bash
conda env config vars set OPENAI_API_KEY=your_key
```

For some experiments, TogetherAI key is required to run the code. Please set the environment variable `TOGETHER_API_KEY` to your key. The recommend way is to add the key to the conda environment:
```bash
conda env config vars set TOGETHER_API_KEY=your_key
```

A redis-stack server is required to run the code. Please follow the [instruction](https://redis.io/docs/stack/get-started/install/docker/) to start a redis-stack server or use an existing server. You can also check [Q&A](/docs/troubleshooting.md) to initiate the redis server with the Sotopia data.

The `REDIS_OM_URL` need to be set before loading and saving agents:
```bash
conda env config vars set REDIS_OM_URL="redis://user:password@host:port"
```

Make a folder to store the logs:
```bash
mkdir logs
```



## Easy Sample Server
You can view an episode demo with default parameters with the following:
```python
Expand All @@ -118,82 +82,3 @@ or run
```bash
python examples/minimalist_demo.py
```

## Contribution
#### Install dev options
Follow the installation instruction above and then, instead of running `python -m pip install -e .`, run the following commands:

```bash
python -m pip install -e ".[dev]"
mypy --install-types --non-interactive sotopia
python -m pip install pre-commit
pre-commit install
```
#### New branch for each feature
`git checkout -b feature/feature-name` and PR to `main` branch.
#### Before committing
Run `pytest` to make sure all tests pass (this will ensure dynamic typing passed with beartype) and `mypy --strict .` to check static typing.
(You can also run `pre-commit run --all-files` to run all checks)
#### Check github action result
Check the github action result to make sure all tests pass. If not, fix the errors and push again.

## Running Experiments
We use `gin-config` to configure the experiments. You don't need to be an expert to use it. The basic syntax is
```bash
python <code_file.py> --gin_file <gin_file1> --gin_file <gin_file2> '--gin.PARAM1=value1' '--gin.PARAM2=value2'
```
The `--gin_file` is used to load and compose the default configuration. The `--gin.PARAM1=value1` is used to overwrite the default configuration. The later configuration will always overwrite the previous one.

Here is an example of running an experiment:

```bash
python examples/experiment_eval.py --gin_file sotopia_conf/generation_utils_conf/generate.gin --gin_file sotopia_conf/server_conf/server.gin --gin_file sotopia_conf/run_async_server_in_batch.gin '--gin.ENV_IDS=["01H7VFHPDZVVCDZR3AARA547CY"]' '--gin.AGENT1_MODEL="gpt-4"' '--gin.BATCH_SIZE=20' '--gin.PUSH_TO_DB=False' '--gin.TAG="test"'
```
For the complete set of parameters, please check the `sotopia_conf` folder.

To run a large batch of environments, you can change the `ENV_IDS` parameter in `sotopia_conf/run_async_server_in_batch.gin` to a list of environment ids. When `gin.ENV_IDS==[]`, all environments on the DB will be used.

## Getting access to your simulation
After running experiments, you can go to the `examples/redis_stats.ipynb` notebook to check the existing episodes (Episode Log section), as well as calculate the performance.

For the original Sotopia simulation in our paper's experiments, you can find how to get them in the [Q&A](/docs/troubleshooting.md) section in the `./docs` folder.

## Adding new characters and environments
You can use the following function with the `**kwargs` being the properties of the `AgentProfile` class. This is the same for the scenarios/environments.
```python
class AgentProfile(JsonModel):
first_name: str = Field(index=True)
last_name: str = Field(index=True)
age: int = Field(index=True, default_factory=lambda: 0)
occupation: str = Field(index=True, default_factory=lambda: "")
gender: str = Field(index=True, default_factory=lambda: "")
gender_pronoun: str = Field(index=True, default_factory=lambda: "")
public_info: str = Field(index=True, default_factory=lambda: "")
big_five: str = Field(index=True, default_factory=lambda: "")
moral_values: list[str] = Field(index=False, default_factory=lambda: [])
schwartz_personal_values: list[str] = Field(index=False, default_factory=lambda: [])
personality_and_values: str = Field(index=True, default_factory=lambda: "")
decision_making_style: str = Field(index=True, default_factory=lambda: "")
secret: str = Field(default_factory=lambda: "")
model_id: str = Field(default_factory=lambda: "")

class EnvironmentProfile(JsonModel):
codename: str = Field(...)
source: str = Field(...)
scenario: str = Field(...)
agent_goals: list[str] = Field(...)
...
```

```python

from sotopia.database.persistent_profile import AgentProfile, EnvironmentProfile

def add_agent_to_database(**kwargs: dict[str, Any]) -> None:
agent = AgentProfile(**kwargs)
agent.save()

def add_env_profile(**kwargs: dict[str, Any]) -> None:
env_profile = EnvironmentProfile(**kwargs)
env_profile.save()
```
4 changes: 4 additions & 0 deletions docs/pages/_meta.json
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,10 @@
"title": "Scripts",
"href": "/scripts"
},
"benchmark": {
"title": "Benchmark",
"href": "/benchmark"
},
"xml": {
"title": "XML Formatter",
"href": "/xml"
Expand Down
71 changes: 71 additions & 0 deletions docs/pages/agents.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,71 @@
## Agents
Sotopia supports a variety of agents that can support social simulations for a variety of purposes.

### LLMAgent

LLMAgent is the core agent that is powered by a large language model
```python
class LLMAgent(BaseAgent[Observation, AgentAction]):
def __init__(
self,
agent_name: str | None = None,
uuid_str: str | None = None,
agent_profile: AgentProfile | None = None,
model_name: str = "gpt-3.5-turbo",
script_like: bool = False,
) -> None:
```

### ScriptWritingAgent
Script Writing Agent is an agent that is specialized in writing scripts of social interactions. It is a subclass of LLMAgent and supports the investigation of [*Is this the real life? Is this just fantasy? The Misleading Success of Simulating Social Interactions With LLMs*](https://arxiv.org/abs/2403.05020)

```python
class ScriptWritingAgent(LLMAgent):
def __init__(
self,
agent_name: str | None = None,
uuid_str: str | None = None,
agent_profile: AgentProfile | None = None,
model_name: str = "gpt-3.5-turbo",
agent_names: list[str] = [],
background: ScriptBackground | None = None,
) -> None:
```

### HumanAgent
This agent allows for human input to be used in the simulation through the command line.
```python
class HumanAgent(BaseAgent[Observation, AgentAction]):
"""
A human agent that takes input from the command line.
"""

def __init__(
self,
agent_name: str | None = None,
uuid_str: str | None = None,
agent_profile: AgentProfile | None = None,
) -> None:
super().__init__(
agent_name=agent_name,
uuid_str=uuid_str,
agent_profile=agent_profile,
)
self.model_name: LLM_Name = "human"
```

### RedisAgent

RedisAgent is an agent that can be used to interact with the Redis database.
```python
class RedisAgent(BaseAgent[Observation, AgentAction]):
"""An agent use redis as a message broker."""

def __init__(
self,
agent_name: str | None = None,
uuid_str: str | None = None,
session_id: str | None = None,
agent_profile: AgentProfile | None = None,
) -> None:
```
17 changes: 17 additions & 0 deletions docs/pages/contribution.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
## Contribution
#### Install dev options
Follow the installation instruction above and then, instead of running `python -m pip install -e .`, run the following commands:

```bash
python -m pip install -e ".[dev]"
mypy --install-types --non-interactive sotopia
python -m pip install pre-commit
pre-commit install
```
#### New branch for each feature
`git checkout -b feature/feature-name` and PR to `main` branch.
#### Before committing
Run `pytest` to make sure all tests pass (this will ensure dynamic typing passed with beartype) and `mypy --strict .` to check static typing.
(You can also run `pre-commit run --all-files` to run all checks)
#### Check github action result
Check the github action result to make sure all tests pass. If not, fix the errors and push again.
39 changes: 39 additions & 0 deletions docs/pages/database.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,39 @@
## Adding new characters and environments
You can use the following function with the `**kwargs` being the properties of the `AgentProfile` class. This is the same for the scenarios/environments.
```python
class AgentProfile(JsonModel):
first_name: str = Field(index=True)
last_name: str = Field(index=True)
age: int = Field(index=True, default_factory=lambda: 0)
occupation: str = Field(index=True, default_factory=lambda: "")
gender: str = Field(index=True, default_factory=lambda: "")
gender_pronoun: str = Field(index=True, default_factory=lambda: "")
public_info: str = Field(index=True, default_factory=lambda: "")
big_five: str = Field(index=True, default_factory=lambda: "")
moral_values: list[str] = Field(index=False, default_factory=lambda: [])
schwartz_personal_values: list[str] = Field(index=False, default_factory=lambda: [])
personality_and_values: str = Field(index=True, default_factory=lambda: "")
decision_making_style: str = Field(index=True, default_factory=lambda: "")
secret: str = Field(default_factory=lambda: "")
model_id: str = Field(default_factory=lambda: "")

class EnvironmentProfile(JsonModel):
codename: str = Field(...)
source: str = Field(...)
scenario: str = Field(...)
agent_goals: list[str] = Field(...)
...
```

```python

from sotopia.database.persistent_profile import AgentProfile, EnvironmentProfile

def add_agent_to_database(**kwargs: dict[str, Any]) -> None:
agent = AgentProfile(**kwargs)
agent.save()

def add_env_profile(**kwargs: dict[str, Any]) -> None:
env_profile = EnvironmentProfile(**kwargs)
env_profile.save()
```
20 changes: 20 additions & 0 deletions docs/pages/experiment.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
# Running Experiments
We use `gin-config` to configure the experiments. You don't need to be an expert to use it. The basic syntax is
```bash
python <code_file.py> --gin_file <gin_file1> --gin_file <gin_file2> '--gin.PARAM1=value1' '--gin.PARAM2=value2'
```
The `--gin_file` is used to load and compose the default configuration. The `--gin.PARAM1=value1` is used to overwrite the default configuration. The later configuration will always overwrite the previous one.

Here is an example of running an experiment:

```bash
python examples/experiment_eval.py --gin_file sotopia_conf/generation_utils_conf/generate.gin --gin_file sotopia_conf/server_conf/server.gin --gin_file sotopia_conf/run_async_server_in_batch.gin '--gin.ENV_IDS=["01H7VFHPDZVVCDZR3AARA547CY"]' '--gin.AGENT1_MODEL="gpt-4"' '--gin.BATCH_SIZE=20' '--gin.PUSH_TO_DB=False' '--gin.TAG="test"'
```
For the complete set of parameters, please check the `sotopia_conf` folder.

To run a large batch of environments, you can change the `ENV_IDS` parameter in `sotopia_conf/run_async_server_in_batch.gin` to a list of environment ids. When `gin.ENV_IDS==[]`, all environments on the DB will be used.

## Getting access to your simulation
After running experiments, you can go to the `examples/redis_stats.ipynb` notebook to check the existing episodes (Episode Log section), as well as calculate the performance.

For the original Sotopia simulation in our paper's experiments, you can find how to get them in the [Q&A](/docs/troubleshooting.md) section in the `./docs` folder.

0 comments on commit 3679555

Please sign in to comment.