https://codalab.lisn.upsaclay.fr/competitions/906
Export the DATA_PATH
variable to the location where you want the dataset stored:
$ export DATA_PATH="$PWD/../data"
Run the dataset preparation script (the data will be downloaded if not already present):
$ ./prepare_data.sh
Run the baseline and create a predictions.pkl
files with the probabilities on the validation set:
$ python -m mmsrl.train configs/baseline.py --output_val=predictions.pkl
Show the content predictions.pkl
:
$ python -m mmsrl.show_predictions predictions.pkl
Create a new ensemble prediction in the current directory .
from directories containing several prediction files (they should contain val
and test
in their name):
$ python -m mmsrl.ensembling . path/to/directory1 path/to/directory2 …
Create a .zip
containing a .jsonl
for submission on Codalab val dataset:
$ python -m mmsrl.submission submission.zip predictions.pkl
To run using ipython:
ipython --pdb -c "%run -m mmsrl.train -- configs/ofa_vqa.py --learning_rate=1e-5"
See CONFIG.md
for more details on the handling of hyperparameters.
pip install -r requirements
Install CLIP
:
pip install git+https://github.com/openai/CLIP.git
Install fairseq
:
git clone https://github.com/pytorch/fairseq.git
cd fairseq
pip install --use-feature=in-tree-build .
Use OFA
(from the repository root) and get checkpoints:
git submodule update --init --recursive
mkdir OFA/checkpoints
cd OFA/checkpoints
wget https://ofa-beijing.oss-cn-beijing.aliyuncs.com/checkpoints/ofa_base.pt
wget https://ofa-beijing.oss-cn-beijing.aliyuncs.com/checkpoints/vqa_large_best.pt
wget https://ofa-beijing.oss-cn-beijing.aliyuncs.com/checkpoints/snli_ve_large_best.pt
python mmsrl/generate_image_features.py --output_folder /data/mmsrl/all/features --image_dir /data/mmsrl/all/images/ --modelname vgg python mmsrl/generate_image_features.py --output_folder/data/mmsrl/all/features --image_dir /data/mmsrl/all/images/ --modelname b7
python -m mmsrl.generate_captions.py