citcdf
is a package to perform conditional independence testing using
empirical conditional cumulative distribution function estimations.
The main function of the package is cit()
. It uses an asymptotic test
(for large sample size , or a permutation test for small sample size
with the argument method
) to perform conditional independence testing.
The approach implemented in this package is detailed in the following article:
Gauthier M, Agniel D, Thiébaut R & Hejblum BP (2020). Distribution-free complex hypothesis testing for single-cell RNA-seq differential expression analysis, BioRxiv doi:10.1101/2021.05.21.445165
citcdf
is available from
GitHub:
#install.packages("devtools")
remotes::install_github("sistm/citcdf")
Here is a basic example which shows how to use citcdf
with simple
generated data.
## Data Generation
X <- data.frame("X1" = as.factor(rbinom(n=100, size = 1, prob = 0.5)))
Y <- data.frame("Y1" = t(replicate(10, ((X$X1==1)*rnorm(n = 50,0,1)) + ((X$X1==0)*rnorm(n = 50,0.5,1)))))
# Hypothesis testing
res_asymp <- cit(exprmat=Y, variable2test=X, test="asymptotic") # asymptotic test
res_perm <- cit(exprmat=Y, variable2test=X, test="permutation",
adaptive=TRUE) # adaptive permutation test
– Marine Gauthier, Denis Agniel, Kalidou Ba, Rodolphe Thiébaut & Boris Hejblum
hex illustration by Jérôme Dubois.