Skip to content

shaitao/pix2pix-deblur

 
 

Repository files navigation

A Naive Approach to Deblur Photos Using Pix2Pix

(WARNING: Only a demonstrative project. Far from production ready.)

Blog post

Pre-requisites

  • Nvidia GPU (Sorry no CPU mode)
  • pytorch 0.2.0
  • The dataset should be organized as:
    • dataset_root/
      • train/
        • |arbitrary_naming|/
          • train images
      • val/
        • |arbitrary_naming|/
          • validation images

The easiest way to reproduce results is to use nvidia-docker. This project is tested on ceshine/cuda-pytorch:0.2.0 image. There is also a Dockerfile in the root folder. Use docker build -t deblur . to build the docker image.

Training

The following assumes you have built a Docker image named deblur.

Start the docker image (replace /mnt/SSD_Data/mirflickr/ with the path to your dataset):

nvidia-docker run -ti --init -v /mnt/SSD_Data/mirflickr/:/data \
                  --name deblur-c --ipc=host deblur bash

Start training (use python train.py -h to see the list of available command-line parameters):

python train.py --dataset /data --batchSize 16 --nEpochs 200 \
                --cuda --testBatchSize 32 --lamb 5 --lrG 5e-5 --lrD 5e-5

Debug images will be write to debug folder. Modek checkpoints will be write to checkpoint.

Predicting / Deblurring

Work In Progress (deblur.py)

Currently only photos with longer edge shorter than 512 px are supported (Given that your GPU has enough RAM).

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%