-
Notifications
You must be signed in to change notification settings - Fork 39
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Example] ggml: add grammar example (#126)
* [Example] ggml: add grammar example Signed-off-by: dm4 <[email protected]> * [CI] add grammar test Signed-off-by: dm4 <[email protected]> --------- Signed-off-by: dm4 <[email protected]>
- Loading branch information
Showing
5 changed files
with
248 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,8 @@ | ||
[package] | ||
name = "wasmedge-ggml-grammar" | ||
version = "0.1.0" | ||
edition = "2021" | ||
|
||
[dependencies] | ||
serde_json = "1.0" | ||
wasmedge-wasi-nn = "0.7.0" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,37 @@ | ||
# Grammar Example For WASI-NN with GGML Backend | ||
|
||
> [!NOTE] | ||
> Please refer to the [wasmedge-ggml/README.md](../README.md) for the general introduction and the setup of the WASI-NN plugin with GGML backend. This document will focus on the specific example of using grammar in ggml. | ||
## Get the Model | ||
|
||
In this example, we are going to use the [llama-2-7b](https://huggingface.co/TheBloke/Llama-2-7B-GGUF) model. Please note that we are not using a fine-tuned chat model. | ||
|
||
```bash | ||
curl -LO https://huggingface.co/TheBloke/Llama-2-7B-GGUF/resolve/main/llama-2-7b.Q5_K_M.gguf | ||
``` | ||
|
||
## Parameters | ||
|
||
> [!NOTE] | ||
> Please check the parameters section of [wasmedge-ggml/README.md](https://github.com/second-state/WasmEdge-WASINN-examples/tree/master/wasmedge-ggml#parameters) first. | ||
In this example, we are going to use the `grammar` option to constrain the model to generate the JSON output in a specific format. | ||
|
||
You can check [the documents at llama.cpp](https://github.com/ggerganov/llama.cpp/tree/master/grammars) for more details about grammars. | ||
|
||
## Execute | ||
|
||
In this example, we are going to use the `n_predict` option to avoid the model from generating too many outputs. | ||
|
||
```console | ||
$ wasmedge --dir .:. \ | ||
--env n_predict=99 \ | ||
--nn-preload default:GGML:AUTO:llama-2-7b.Q5_K_M.gguf \ | ||
wasmedge-ggml-grammar.wasm default | ||
|
||
USER: | ||
JSON object with 5 country names as keys and their capitals as values: | ||
ASSISTANT: | ||
{"US": "Washington", "UK": "London", "Germany": "Berlin", "France": "Paris", "Italy": "Rome"} | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,190 @@ | ||
use serde_json::json; | ||
use serde_json::Value; | ||
use std::env; | ||
use std::io; | ||
use wasmedge_wasi_nn::{ | ||
self, BackendError, Error, ExecutionTarget, GraphBuilder, GraphEncoding, GraphExecutionContext, | ||
TensorType, | ||
}; | ||
|
||
fn read_input() -> String { | ||
loop { | ||
let mut answer = String::new(); | ||
io::stdin() | ||
.read_line(&mut answer) | ||
.expect("Failed to read line"); | ||
if !answer.is_empty() && answer != "\n" && answer != "\r\n" { | ||
return answer.trim().to_string(); | ||
} | ||
} | ||
} | ||
|
||
fn get_options_from_env() -> Value { | ||
let mut options = json!({}); | ||
if let Ok(val) = env::var("enable_log") { | ||
options["enable-log"] = serde_json::from_str(val.as_str()) | ||
.expect("invalid value for enable-log option (true/false)") | ||
} else { | ||
options["enable-log"] = serde_json::from_str("false").unwrap() | ||
} | ||
if let Ok(val) = env::var("n_gpu_layers") { | ||
options["n-gpu-layers"] = | ||
serde_json::from_str(val.as_str()).expect("invalid ngl value (unsigned integer") | ||
} else { | ||
options["n-gpu-layers"] = serde_json::from_str("0").unwrap() | ||
} | ||
if let Ok(val) = env::var("n_predict") { | ||
options["n-predict"] = | ||
serde_json::from_str(val.as_str()).expect("invalid n-predict value (unsigned integer") | ||
} | ||
options["ctx-size"] = serde_json::from_str("1024").unwrap(); | ||
|
||
options | ||
} | ||
|
||
fn set_data_to_context(context: &mut GraphExecutionContext, data: Vec<u8>) -> Result<(), Error> { | ||
context.set_input(0, TensorType::U8, &[1], &data) | ||
} | ||
|
||
#[allow(dead_code)] | ||
fn set_metadata_to_context( | ||
context: &mut GraphExecutionContext, | ||
data: Vec<u8>, | ||
) -> Result<(), Error> { | ||
context.set_input(1, TensorType::U8, &[1], &data) | ||
} | ||
|
||
fn get_data_from_context(context: &GraphExecutionContext, index: usize) -> String { | ||
// Preserve for 4096 tokens with average token length 6 | ||
const MAX_OUTPUT_BUFFER_SIZE: usize = 4096 * 6; | ||
let mut output_buffer = vec![0u8; MAX_OUTPUT_BUFFER_SIZE]; | ||
let mut output_size = context | ||
.get_output(index, &mut output_buffer) | ||
.expect("Failed to get output"); | ||
output_size = std::cmp::min(MAX_OUTPUT_BUFFER_SIZE, output_size); | ||
|
||
return String::from_utf8_lossy(&output_buffer[..output_size]).to_string(); | ||
} | ||
|
||
fn get_output_from_context(context: &GraphExecutionContext) -> String { | ||
get_data_from_context(context, 0) | ||
} | ||
|
||
fn get_metadata_from_context(context: &GraphExecutionContext) -> Value { | ||
serde_json::from_str(&get_data_from_context(context, 1)).expect("Failed to get metadata") | ||
} | ||
|
||
const JSON_GRAMMAR: &str = r#" | ||
root ::= object | ||
value ::= object | array | string | number | ("true" | "false" | "null") ws | ||
object ::= | ||
"{" ws ( | ||
string ":" ws value | ||
("," ws string ":" ws value)* | ||
)? "}" ws | ||
array ::= | ||
"[" ws ( | ||
value | ||
("," ws value)* | ||
)? "]" ws | ||
string ::= | ||
"\"" ( | ||
[^"\\\x7F\x00-\x1F] | | ||
"\\" (["\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F]) | ||
)* "\"" ws | ||
number ::= ("-"? ([0-9] | [1-9] [0-9]*)) ("." [0-9]+)? ([eE] [-+]? [0-9]+)? ws | ||
ws ::= ([ \t\n] ws)? | ||
"#; | ||
|
||
fn main() { | ||
let args: Vec<String> = env::args().collect(); | ||
let model_name: &str = &args[1]; | ||
|
||
// Set options for the graph. Check our README for more details: | ||
// https://github.com/second-state/WasmEdge-WASINN-examples/tree/master/wasmedge-ggml#parameters | ||
let mut options = get_options_from_env(); | ||
|
||
// Add grammar for JSON output. | ||
// Check [here](https://github.com/ggerganov/llama.cpp/tree/master/grammars) for more details. | ||
options["grammar"] = JSON_GRAMMAR.into(); | ||
|
||
// Make the output more consistent. | ||
options["temp"] = json!(0.1); | ||
|
||
// Create graph and initialize context. | ||
let graph = GraphBuilder::new(GraphEncoding::Ggml, ExecutionTarget::AUTO) | ||
.config(serde_json::to_string(&options).expect("Failed to serialize options")) | ||
.build_from_cache(model_name) | ||
.expect("Failed to build graph"); | ||
let mut context = graph | ||
.init_execution_context() | ||
.expect("Failed to init context"); | ||
|
||
// If there is a third argument, use it as the prompt and enter non-interactive mode. | ||
// This is mainly for the CI workflow. | ||
if args.len() >= 3 { | ||
let prompt = &args[2]; | ||
// Set the prompt. | ||
println!("Prompt:\n{}", prompt); | ||
let tensor_data = prompt.as_bytes().to_vec(); | ||
context | ||
.set_input(0, TensorType::U8, &[1], &tensor_data) | ||
.expect("Failed to set input"); | ||
println!("Response:"); | ||
|
||
// Get the number of input tokens and llama.cpp versions. | ||
let input_metadata = get_metadata_from_context(&context); | ||
println!("[INFO] llama_commit: {}", input_metadata["llama_commit"]); | ||
println!( | ||
"[INFO] llama_build_number: {}", | ||
input_metadata["llama_build_number"] | ||
); | ||
println!( | ||
"[INFO] Number of input tokens: {}", | ||
input_metadata["input_tokens"] | ||
); | ||
|
||
// Get the output. | ||
context.compute().expect("Failed to compute"); | ||
let output = get_output_from_context(&context); | ||
println!("{}", output.trim()); | ||
|
||
// Retrieve the output metadata. | ||
let metadata = get_metadata_from_context(&context); | ||
println!( | ||
"[INFO] Number of input tokens: {}", | ||
metadata["input_tokens"] | ||
); | ||
println!( | ||
"[INFO] Number of output tokens: {}", | ||
metadata["output_tokens"] | ||
); | ||
std::process::exit(0); | ||
} | ||
|
||
loop { | ||
println!("USER:"); | ||
let input = read_input(); | ||
|
||
// Set prompt to the input tensor. | ||
set_data_to_context(&mut context, input.as_bytes().to_vec()).expect("Failed to set input"); | ||
|
||
// Execute the inference. | ||
match context.compute() { | ||
Ok(_) => (), | ||
Err(Error::BackendError(BackendError::ContextFull)) => { | ||
println!("\n[INFO] Context full, we'll reset the context and continue."); | ||
} | ||
Err(Error::BackendError(BackendError::PromptTooLong)) => { | ||
println!("\n[INFO] Prompt too long, we'll reset the context and continue."); | ||
} | ||
Err(err) => { | ||
println!("\n[ERROR] {}", err); | ||
} | ||
} | ||
|
||
// Retrieve the output. | ||
let output = get_output_from_context(&context); | ||
println!("ASSISTANT:\n{}", output.trim()); | ||
} | ||
} |
Binary file not shown.