Skip to content

Commit

Permalink
Merge pull request #128 from miguelraz/dotprodexample
Browse files Browse the repository at this point in the history
add dot_product example
  • Loading branch information
workingjubilee authored Dec 4, 2022
2 parents 1547dd6 + da3bd6d commit 582239a
Show file tree
Hide file tree
Showing 2 changed files with 182 additions and 0 deletions.
13 changes: 13 additions & 0 deletions crates/core_simd/examples/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
### `stdsimd` examples

This crate is a port of example uses of `stdsimd`, mostly taken from the `packed_simd` crate.

The examples contain, as in the case of `dot_product.rs`, multiple ways of solving the problem, in order to show idiomatic uses of SIMD and iteration of performance designs.

Run the tests with the command

```
cargo run --example dot_product
```

and verify the code for `dot_product.rs` on your machine.
169 changes: 169 additions & 0 deletions crates/core_simd/examples/dot_product.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,169 @@
// Code taken from the `packed_simd` crate
// Run this code with `cargo test --example dot_product`
//use std::iter::zip;

#![feature(array_chunks)]
#![feature(slice_as_chunks)]
// Add these imports to use the stdsimd library
#![feature(portable_simd)]
use core_simd::simd::*;

// This is your barebones dot product implementation:
// Take 2 vectors, multiply them element wise and *then*
// go along the resulting array and add up the result.
// In the next example we will see if there
// is any difference to adding and multiplying in tandem.
pub fn dot_prod_scalar_0(a: &[f32], b: &[f32]) -> f32 {
assert_eq!(a.len(), b.len());

a.iter().zip(b.iter()).map(|(a, b)| a * b).sum()
}

// When dealing with SIMD, it is very important to think about the amount
// of data movement and when it happens. We're going over simple computation examples here, and yet
// it is not trivial to understand what may or may not contribute to performance
// changes. Eventually, you will need tools to inspect the generated assembly and confirm your
// hypothesis and benchmarks - we will mention them later on.
// With the use of `fold`, we're doing a multiplication,
// and then adding it to the sum, one element from both vectors at a time.
pub fn dot_prod_scalar_1(a: &[f32], b: &[f32]) -> f32 {
assert_eq!(a.len(), b.len());
a.iter()
.zip(b.iter())
.fold(0.0, |a, zipped| a + zipped.0 * zipped.1)
}

// We now move on to the SIMD implementations: notice the following constructs:
// `array_chunks::<4>`: mapping this over the vector will let use construct SIMD vectors
// `f32x4::from_array`: construct the SIMD vector from a slice
// `(a * b).reduce_sum()`: Multiply both f32x4 vectors together, and then reduce them.
// This approach essentially uses SIMD to produce a vector of length N/4 of all the products,
// and then add those with `sum()`. This is suboptimal.
// TODO: ASCII diagrams
pub fn dot_prod_simd_0(a: &[f32], b: &[f32]) -> f32 {
assert_eq!(a.len(), b.len());
// TODO handle remainder when a.len() % 4 != 0
a.array_chunks::<4>()
.map(|&a| f32x4::from_array(a))
.zip(b.array_chunks::<4>().map(|&b| f32x4::from_array(b)))
.map(|(a, b)| (a * b).reduce_sum())
.sum()
}

// There's some simple ways to improve the previous code:
// 1. Make a `zero` `f32x4` SIMD vector that we will be accumulating into
// So that there is only one `sum()` reduction when the last `f32x4` has been processed
// 2. Exploit Fused Multiply Add so that the multiplication, addition and sinking into the reduciton
// happen in the same step.
// If the arrays are large, minimizing the data shuffling will lead to great perf.
// If the arrays are small, handling the remainder elements when the length isn't a multiple of 4
// Can become a problem.
pub fn dot_prod_simd_1(a: &[f32], b: &[f32]) -> f32 {
assert_eq!(a.len(), b.len());
// TODO handle remainder when a.len() % 4 != 0
a.array_chunks::<4>()
.map(|&a| f32x4::from_array(a))
.zip(b.array_chunks::<4>().map(|&b| f32x4::from_array(b)))
.fold(f32x4::splat(0.0), |acc, zipped| acc + zipped.0 * zipped.1)
.reduce_sum()
}

// A lot of knowledgeable use of SIMD comes from knowing specific instructions that are
// available - let's try to use the `mul_add` instruction, which is the fused-multiply-add we were looking for.
use std_float::StdFloat;
pub fn dot_prod_simd_2(a: &[f32], b: &[f32]) -> f32 {
assert_eq!(a.len(), b.len());
// TODO handle remainder when a.len() % 4 != 0
let mut res = f32x4::splat(0.0);
a.array_chunks::<4>()
.map(|&a| f32x4::from_array(a))
.zip(b.array_chunks::<4>().map(|&b| f32x4::from_array(b)))
.for_each(|(a, b)| {
res = a.mul_add(b, res);
});
res.reduce_sum()
}

// Finally, we will write the same operation but handling the loop remainder.
const LANES: usize = 4;
pub fn dot_prod_simd_3(a: &[f32], b: &[f32]) -> f32 {
assert_eq!(a.len(), b.len());

let (a_extra, a_chunks) = a.as_rchunks();
let (b_extra, b_chunks) = b.as_rchunks();

// These are always true, but for emphasis:
assert_eq!(a_chunks.len(), b_chunks.len());
assert_eq!(a_extra.len(), b_extra.len());

let mut sums = [0.0; LANES];
for ((x, y), d) in std::iter::zip(a_extra, b_extra).zip(&mut sums) {
*d = x * y;
}

let mut sums = f32x4::from_array(sums);
std::iter::zip(a_chunks, b_chunks).for_each(|(x, y)| {
sums += f32x4::from_array(*x) * f32x4::from_array(*y);
});

sums.reduce_sum()
}

// Finally, we present an iterator version for handling remainders in a scalar fashion at the end of the loop.
// Unfortunately, this is allocating 1 `XMM` register on the order of `~len(a)` - we'll see how we can get around it in the
// next example.
pub fn dot_prod_simd_4(a: &[f32], b: &[f32]) -> f32 {
let mut sum = a
.array_chunks::<4>()
.map(|&a| f32x4::from_array(a))
.zip(b.array_chunks::<4>().map(|&b| f32x4::from_array(b)))
.map(|(a, b)| a * b)
.fold(f32x4::splat(0.0), std::ops::Add::add)
.reduce_sum();
let remain = a.len() - (a.len() % 4);
sum += a[remain..]
.iter()
.zip(&b[remain..])
.map(|(a, b)| a * b)
.sum::<f32>();
sum
}

// This version allocates a single `XMM` register for accumulation, and the folds don't allocate on top of that.
// Notice the the use of `mul_add`, which can do a multiply and an add operation ber iteration.
pub fn dot_prod_simd_5(a: &[f32], b: &[f32]) -> f32 {
a.array_chunks::<4>()
.map(|&a| f32x4::from_array(a))
.zip(b.array_chunks::<4>().map(|&b| f32x4::from_array(b)))
.fold(f32x4::splat(0.), |acc, (a, b)| a.mul_add(b, acc))
.reduce_sum()
}

fn main() {
// Empty main to make cargo happy
}

#[cfg(test)]
mod tests {
#[test]
fn smoke_test() {
use super::*;
let a: Vec<f32> = vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0];
let b: Vec<f32> = vec![-8.0, -7.0, -6.0, -5.0, 4.0, 3.0, 2.0, 1.0];
let x: Vec<f32> = [0.5; 1003].to_vec();
let y: Vec<f32> = [2.0; 1003].to_vec();

// Basic check
assert_eq!(0.0, dot_prod_scalar_0(&a, &b));
assert_eq!(0.0, dot_prod_scalar_1(&a, &b));
assert_eq!(0.0, dot_prod_simd_0(&a, &b));
assert_eq!(0.0, dot_prod_simd_1(&a, &b));
assert_eq!(0.0, dot_prod_simd_2(&a, &b));
assert_eq!(0.0, dot_prod_simd_3(&a, &b));
assert_eq!(0.0, dot_prod_simd_4(&a, &b));
assert_eq!(0.0, dot_prod_simd_5(&a, &b));

// We can handle vectors that are non-multiples of 4
assert_eq!(1003.0, dot_prod_simd_3(&x, &y));
}
}

0 comments on commit 582239a

Please sign in to comment.