import pandas as pd
import numpy as np
from sklearn.cross_validation import train_test_split
from sklearn.neighbors import KNeighborsClassifier
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.tree import DecisionTreeClassifier
data=pd.read_csv('housing.csv')
data.head()
housing_mean=housing_data.fillna(housing_data['total_bedrooms'].mean())
x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.20, random_state=42)
model=LogisticRegression()
model.fit(x_train,y_train)
new_prediction=model.predict(testing_data)
from sklearn.metrics import mean_squared_error
rmse = np.sqrt(mean_squared_error(prediction, y_test))
rmse