Skip to content

rahuljadli/House-Price-Prediction

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

House-Price-Prediction-Advanced-Regression

Imported all the required library

import pandas as pd
import numpy as np
from sklearn.cross_validation import train_test_split
from sklearn.neighbors import KNeighborsClassifier
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.tree import DecisionTreeClassifier

Loading and Viewing the data

data=pd.read_csv('housing.csv')
data.head()

Data Visualisation

Ploting the Heatmap

alt Survived

Ploting Ocean Proximity

alt Age

Ploting Lattitude effect on house price

alt Sex Survival

Ploting Ocean Median Price

alt Sex Survival

Ploting Income effect on house price

alt Sex Survival

Data filling

housing_mean=housing_data.fillna(housing_data['total_bedrooms'].mean())

Using Different Model's

Creating Training and Testing Data set

x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.20, random_state=42)

Training the model

model=LogisticRegression()
model.fit(x_train,y_train)

Making the prediction

new_prediction=model.predict(testing_data)

Getting the accuracy score

from sklearn.metrics import mean_squared_error
rmse = np.sqrt(mean_squared_error(prediction, y_test))
rmse

Got RMSE value of 69140.009

About

House Price Prediction

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published