-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
35 changed files
with
3,297 additions
and
21 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -2,7 +2,7 @@ | |
"hash": "ae66ddeddd15b4b93302fc30e2f9e751", | ||
"result": { | ||
"engine": "jupyter", | ||
"markdown": "---\ntitle: La Palma Earthquakes\nauthor:\n - name: Steve Purves\n orcid: 0000-0002-0760-5497\n corresponding: true\n email: [email protected]\n roles:\n - Investigation\n - Project administration\n - Software\n - Visualization\n affiliations:\n - Curvenote\n - name: Rowan Cockett\n orcid: 0000-0002-7859-8394\n corresponding: false\n roles: []\n affiliations:\n - Curvenote\nkeywords:\n - La Palma\n - Earthquakes\nabstract: |\n In September 2021, a significant jump in seismic activity on the island of La Palma (Canary Islands, Spain) signaled the start of a volcanic crisis that still continues at the time of writing. Earthquake data is continually collected and published by the Instituto Geográphico Nacional (IGN). ...\nplain-language-summary: |\n Earthquake data for the island of La Palma from the September 2021 eruption is found ...\nkey-points:\n - A web scraping script was developed to pull data from the Instituto Geogràphico Nacional into a machine-readable form for analysis\n - Earthquake events on La Palma are consistent with the presence of both mantle and crustal reservoirs.\ndate: last-modified\nbibliography: references.bib\ncitation:\n container-title: Earth and Space Science\nnumber-sections: true\njupyter: python3\n---\n\n\n\n\n\n\n## Introduction\n\n::: {.cell execution_count=1}\n``` {.python .cell-code .hidden}\nimport matplotlib.pyplot as plt\nimport numpy as np\neruptions = [1492, 1585, 1646, 1677, 1712, 1949, 1971, 2021]\n```\n:::\n\n\n::: {.cell execution_count=2}\n``` {.python .cell-code .hidden}\nplt.figure(figsize=(6, 1))\nplt.eventplot(eruptions, lineoffsets=0, linelengths=0.1, color='black')\nplt.gca().axes.get_yaxis().set_visible(False)\nplt.ylabel('')\nplt.show()\n```\n\n::: {.cell-output .cell-output-display}\n![Timeline of recent earthquakes on La Palma](index_files/figure-docx/fig-timeline-output-1.png){#fig-timeline fig-alt='An event plot of the years of the last 8 eruptions on La Palma.'}\n:::\n:::\n\n\n::: {.cell execution_count=3}\n``` {.python .cell-code .hidden}\navg_years_between_eruptions = np.mean(np.diff(eruptions[:-1]))\navg_years_between_eruptions\n```\n\n::: {.cell-output .cell-output-display .hidden execution_count=6}\n```\nnp.float64(79.83333333333333)\n```\n:::\n:::\n\n\n:::{#05605920 .cell .markdown}\nBased on data up to and including 1971, eruptions on La Palma happen every 79\\.8 years on average.\n\nStudies of the magma systems feeding the volcano, such as @marrero2019, have proposed that there are two main magma reservoirs feeding the Cumbre Vieja volcano; one in the mantle (30-40km depth) which charges and in turn feeds a shallower crustal reservoir (10-20km depth).\n\nEight eruptions have been recorded since the late 1400s (@fig-timeline).\n\nData and methods are discussed in @sec-data-methods.\n\nLet $x$ denote the number of eruptions in a year. Then, $x$ can be modeled by a Poisson distribution\n\n$$\np(x) = \\frac{e^{-\\lambda} \\lambda^{x}}{x !}\n$$ {#eq-poisson}\n\nwhere $\\lambda$ is the rate of eruptions per year. Using @eq-poisson, the probability of an eruption in the next $t$ years can be calculated.\n\n| Name | Year |\n|---------------------|------|\n| Current | 2021 |\n| Teneguía | 1971 |\n| Nambroque | 1949 |\n| El Charco | 1712 |\n| Volcán San Antonio | 1677 |\n| Volcán San Martin | 1646 |\n| Tajuya near El Paso | 1585 |\n| Montaña Quemada | 1492 |\n\n: Recent historic eruptions on La Palma {#tbl-history}\n\n@tbl-history summarises the eruptions recorded since the colonization of the islands by Europeans in the late 1400s.\n\n![Map of La Palma](images/la-palma-map.png){#fig-map}\n\nLa Palma is one of the west most islands in the Volcanic Archipelago of the Canary Islands (@fig-map).\n\n\n\n\n\n\n{{< embed notebooks/data-screening.qmd#fig-spatial-plot >}}\n\n\n\n\n\n\n\n\n\n\n@fig-spatial-plot shows the location of recent Earthquakes on La Palma.\n\n## Data & Methods {#sec-data-methods}\n\n## Conclusion\n\n## References {.unnumbered}\n\n::: {#refs}\n:::\n:::\n\n", | ||
"markdown": "---\ntitle: La Palma Earthquakes\nauthor:\n - name: Steve Purves\n orcid: 0000-0002-0760-5497\n corresponding: true\n email: [email protected]\n roles:\n - Investigation\n - Project administration\n - Software\n - Visualization\n affiliations:\n - Curvenote\n - name: Rowan Cockett\n orcid: 0000-0002-7859-8394\n corresponding: false\n roles: []\n affiliations:\n - Curvenote\nkeywords:\n - La Palma\n - Earthquakes\nabstract: |\n In September 2021, a significant jump in seismic activity on the island of La Palma (Canary Islands, Spain) signaled the start of a volcanic crisis that still continues at the time of writing. Earthquake data is continually collected and published by the Instituto Geográphico Nacional (IGN). ...\nplain-language-summary: |\n Earthquake data for the island of La Palma from the September 2021 eruption is found ...\nkey-points:\n - A web scraping script was developed to pull data from the Instituto Geogràphico Nacional into a machine-readable form for analysis\n - Earthquake events on La Palma are consistent with the presence of both mantle and crustal reservoirs.\ndate: last-modified\nbibliography: references.bib\ncitation:\n container-title: Earth and Space Science\nnumber-sections: true\njupyter: python3\n---\n\n\n\n\n\n\n## Introduction\n\n::: {.cell execution_count=1}\n``` {.python .cell-code .hidden}\nimport matplotlib.pyplot as plt\nimport numpy as np\neruptions = [1492, 1585, 1646, 1677, 1712, 1949, 1971, 2021]\n```\n:::\n\n\n::: {.cell execution_count=2}\n``` {.python .cell-code .hidden}\nplt.figure(figsize=(6, 1))\nplt.eventplot(eruptions, lineoffsets=0, linelengths=0.1, color='black')\nplt.gca().axes.get_yaxis().set_visible(False)\nplt.ylabel('')\nplt.show()\n```\n\n::: {.cell-output .cell-output-display}\n![Timeline of recent earthquakes on La Palma](index_files/figure-docx/fig-timeline-output-1.png){#fig-timeline fig-alt='An event plot of the years of the last 8 eruptions on La Palma.'}\n:::\n:::\n\n\n::: {.cell execution_count=3}\n``` {.python .cell-code .hidden}\navg_years_between_eruptions = np.mean(np.diff(eruptions[:-1]))\navg_years_between_eruptions\n```\n\n::: {.cell-output .cell-output-display .hidden execution_count=30}\n```\nnp.float64(79.83333333333333)\n```\n:::\n:::\n\n\n:::{#7b4f9623 .cell .markdown}\nBased on data up to and including 1971, eruptions on La Palma happen every 79\\.8 years on average.\n\nStudies of the magma systems feeding the volcano, such as @marrero2019, have proposed that there are two main magma reservoirs feeding the Cumbre Vieja volcano; one in the mantle (30-40km depth) which charges and in turn feeds a shallower crustal reservoir (10-20km depth).\n\nEight eruptions have been recorded since the late 1400s (@fig-timeline).\n\nData and methods are discussed in @sec-data-methods.\n\nLet $x$ denote the number of eruptions in a year. Then, $x$ can be modeled by a Poisson distribution\n\n$$\np(x) = \\frac{e^{-\\lambda} \\lambda^{x}}{x !}\n$$ {#eq-poisson}\n\nwhere $\\lambda$ is the rate of eruptions per year. Using @eq-poisson, the probability of an eruption in the next $t$ years can be calculated.\n\n| Name | Year |\n|---------------------|------|\n| Current | 2021 |\n| Teneguía | 1971 |\n| Nambroque | 1949 |\n| El Charco | 1712 |\n| Volcán San Antonio | 1677 |\n| Volcán San Martin | 1646 |\n| Tajuya near El Paso | 1585 |\n| Montaña Quemada | 1492 |\n\n: Recent historic eruptions on La Palma {#tbl-history}\n\n@tbl-history summarises the eruptions recorded since the colonization of the islands by Europeans in the late 1400s.\n\n![Map of La Palma](images/la-palma-map.png){#fig-map}\n\nLa Palma is one of the west most islands in the Volcanic Archipelago of the Canary Islands (@fig-map).\n\n\n\n\n\n\n{{< embed notebooks/data-screening.qmd#fig-spatial-plot >}}\n\n\n\n\n\n\n\n\n\n\n@fig-spatial-plot shows the location of recent Earthquakes on La Palma.\n\n## Data & Methods {#sec-data-methods}\n\n## Conclusion\n\n## References {.unnumbered}\n\n::: {#refs}\n:::\n:::\n\n", | ||
"supporting": [ | ||
"index_files/figure-docx" | ||
], | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -2,9 +2,9 @@ | |
"hash": "ae66ddeddd15b4b93302fc30e2f9e751", | ||
"result": { | ||
"engine": "jupyter", | ||
"markdown": "---\ntitle: La Palma Earthquakes\nauthor:\n - name: Steve Purves\n orcid: 0000-0002-0760-5497\n corresponding: true\n email: [email protected]\n roles:\n - Investigation\n - Project administration\n - Software\n - Visualization\n affiliations:\n - Curvenote\n - name: Rowan Cockett\n orcid: 0000-0002-7859-8394\n corresponding: false\n roles: []\n affiliations:\n - Curvenote\nkeywords:\n - La Palma\n - Earthquakes\nabstract: |\n In September 2021, a significant jump in seismic activity on the island of La Palma (Canary Islands, Spain) signaled the start of a volcanic crisis that still continues at the time of writing. Earthquake data is continually collected and published by the Instituto Geográphico Nacional (IGN). ...\nplain-language-summary: |\n Earthquake data for the island of La Palma from the September 2021 eruption is found ...\nkey-points:\n - A web scraping script was developed to pull data from the Instituto Geogràphico Nacional into a machine-readable form for analysis\n - Earthquake events on La Palma are consistent with the presence of both mantle and crustal reservoirs.\ndate: last-modified\nbibliography: references.bib\ncitation:\n container-title: Earth and Space Science\nnumber-sections: true\njupyter: python3\n---\n\n\n## Introduction\n\n::: {#d23c9b68 .cell execution_count=1}\n``` {.python .cell-code .hidden}\nimport matplotlib.pyplot as plt\nimport numpy as np\neruptions = [1492, 1585, 1646, 1677, 1712, 1949, 1971, 2021]\n```\n:::\n\n\n::: {#cell-fig-timeline .cell execution_count=2}\n``` {.python .cell-code .hidden}\nplt.figure(figsize=(6, 1))\nplt.eventplot(eruptions, lineoffsets=0, linelengths=0.1, color='black')\nplt.gca().axes.get_yaxis().set_visible(False)\nplt.ylabel('')\nplt.show()\n```\n\n::: {.cell-output .cell-output-display}\n![Timeline of recent earthquakes on La Palma](index_files/figure-html/fig-timeline-output-1.png){#fig-timeline width=466 height=115 fig-alt='An event plot of the years of the last 8 eruptions on La Palma.'}\n:::\n:::\n\n\n::: {#a3105412 .cell execution_count=3}\n``` {.python .cell-code .hidden}\navg_years_between_eruptions = np.mean(np.diff(eruptions[:-1]))\navg_years_between_eruptions\n```\n\n::: {.cell-output .cell-output-display .hidden execution_count=3}\n```\nnp.float64(79.83333333333333)\n```\n:::\n:::\n\n\n:::{#2187ed8a .cell .markdown}\nBased on data up to and including 1971, eruptions on La Palma happen every 79\\.8 years on average.\n\nStudies of the magma systems feeding the volcano, such as @marrero2019, have proposed that there are two main magma reservoirs feeding the Cumbre Vieja volcano; one in the mantle (30-40km depth) which charges and in turn feeds a shallower crustal reservoir (10-20km depth).\n\nEight eruptions have been recorded since the late 1400s (@fig-timeline).\n\nData and methods are discussed in @sec-data-methods.\n\nLet $x$ denote the number of eruptions in a year. Then, $x$ can be modeled by a Poisson distribution\n\n$$\np(x) = \\frac{e^{-\\lambda} \\lambda^{x}}{x !}\n$$ {#eq-poisson}\n\nwhere $\\lambda$ is the rate of eruptions per year. Using @eq-poisson, the probability of an eruption in the next $t$ years can be calculated.\n\n| Name | Year |\n|---------------------|------|\n| Current | 2021 |\n| Teneguía | 1971 |\n| Nambroque | 1949 |\n| El Charco | 1712 |\n| Volcán San Antonio | 1677 |\n| Volcán San Martin | 1646 |\n| Tajuya near El Paso | 1585 |\n| Montaña Quemada | 1492 |\n\n: Recent historic eruptions on La Palma {#tbl-history}\n\n@tbl-history summarises the eruptions recorded since the colonization of the islands by Europeans in the late 1400s.\n\n![Map of La Palma](images/la-palma-map.png){#fig-map}\n\nLa Palma is one of the west most islands in the Volcanic Archipelago of the Canary Islands (@fig-map).\n\n\n{{< embed notebooks/data-screening.qmd#fig-spatial-plot >}}\n\n\n@fig-spatial-plot shows the location of recent Earthquakes on La Palma.\n\n## Data & Methods {#sec-data-methods}\n\n## Conclusion\n\n## References {.unnumbered}\n\n::: {#refs}\n:::\n:::\n\n", | ||
"markdown": "---\ntitle: La Palma Earthquakes\nauthor:\n - name: Steve Purves\n orcid: 0000-0002-0760-5497\n corresponding: true\n email: [email protected]\n roles:\n - Investigation\n - Project administration\n - Software\n - Visualization\n affiliations:\n - Curvenote\n - name: Rowan Cockett\n orcid: 0000-0002-7859-8394\n corresponding: false\n roles: []\n affiliations:\n - Curvenote\nkeywords:\n - La Palma\n - Earthquakes\nabstract: |\n In September 2021, a significant jump in seismic activity on the island of La Palma (Canary Islands, Spain) signaled the start of a volcanic crisis that still continues at the time of writing. Earthquake data is continually collected and published by the Instituto Geográphico Nacional (IGN). ...\nplain-language-summary: |\n Earthquake data for the island of La Palma from the September 2021 eruption is found ...\nkey-points:\n - A web scraping script was developed to pull data from the Instituto Geogràphico Nacional into a machine-readable form for analysis\n - Earthquake events on La Palma are consistent with the presence of both mantle and crustal reservoirs.\ndate: last-modified\nbibliography: references.bib\ncitation:\n container-title: Earth and Space Science\nnumber-sections: true\njupyter: python3\n---\n\n\n## Introduction\n\n::: {#fdcdfe00 .cell execution_count=1}\n``` {.python .cell-code .hidden}\nimport matplotlib.pyplot as plt\nimport numpy as np\neruptions = [1492, 1585, 1646, 1677, 1712, 1949, 1971, 2021]\n```\n:::\n\n\n::: {#cell-fig-timeline .cell execution_count=2}\n``` {.python .cell-code .hidden}\nplt.figure(figsize=(6, 1))\nplt.eventplot(eruptions, lineoffsets=0, linelengths=0.1, color='black')\nplt.gca().axes.get_yaxis().set_visible(False)\nplt.ylabel('')\nplt.show()\n```\n\n::: {.cell-output .cell-output-display}\n![Timeline of recent earthquakes on La Palma](index_files/figure-html/fig-timeline-output-1.png){#fig-timeline width=466 height=115 fig-alt='An event plot of the years of the last 8 eruptions on La Palma.'}\n:::\n:::\n\n\n::: {#5c8ef837 .cell execution_count=3}\n``` {.python .cell-code .hidden}\navg_years_between_eruptions = np.mean(np.diff(eruptions[:-1]))\navg_years_between_eruptions\n```\n\n::: {.cell-output .cell-output-display .hidden execution_count=27}\n```\nnp.float64(79.83333333333333)\n```\n:::\n:::\n\n\n:::{#c53b4fba .cell .markdown}\nBased on data up to and including 1971, eruptions on La Palma happen every 79\\.8 years on average.\n\nStudies of the magma systems feeding the volcano, such as @marrero2019, have proposed that there are two main magma reservoirs feeding the Cumbre Vieja volcano; one in the mantle (30-40km depth) which charges and in turn feeds a shallower crustal reservoir (10-20km depth).\n\nEight eruptions have been recorded since the late 1400s (@fig-timeline).\n\nData and methods are discussed in @sec-data-methods.\n\nLet $x$ denote the number of eruptions in a year. Then, $x$ can be modeled by a Poisson distribution\n\n$$\np(x) = \\frac{e^{-\\lambda} \\lambda^{x}}{x !}\n$$ {#eq-poisson}\n\nwhere $\\lambda$ is the rate of eruptions per year. Using @eq-poisson, the probability of an eruption in the next $t$ years can be calculated.\n\n| Name | Year |\n|---------------------|------|\n| Current | 2021 |\n| Teneguía | 1971 |\n| Nambroque | 1949 |\n| El Charco | 1712 |\n| Volcán San Antonio | 1677 |\n| Volcán San Martin | 1646 |\n| Tajuya near El Paso | 1585 |\n| Montaña Quemada | 1492 |\n\n: Recent historic eruptions on La Palma {#tbl-history}\n\n@tbl-history summarises the eruptions recorded since the colonization of the islands by Europeans in the late 1400s.\n\n![Map of La Palma](images/la-palma-map.png){#fig-map}\n\nLa Palma is one of the west most islands in the Volcanic Archipelago of the Canary Islands (@fig-map).\n\n\n{{< embed notebooks/data-screening.qmd#fig-spatial-plot >}}\n\n\n@fig-spatial-plot shows the location of recent Earthquakes on La Palma.\n\n## Data & Methods {#sec-data-methods}\n\n## Conclusion\n\n## References {.unnumbered}\n\n::: {#refs}\n:::\n:::\n\n", | ||
"supporting": [ | ||
"index_files/figure-html" | ||
"index_files" | ||
], | ||
"filters": [], | ||
"includes": {} | ||
|
Oops, something went wrong.