Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add partial_transpose to quantum_info.linalg_operations #1462

Merged
merged 18 commits into from
Oct 7, 2024
Merged
Show file tree
Hide file tree
Changes from 15 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions doc/source/api-reference/qibo.rst
Original file line number Diff line number Diff line change
Expand Up @@ -1963,6 +1963,12 @@ Partial trace
.. autofunction:: qibo.quantum_info.partial_trace


Partial transpose
"""""""""""""""""

.. autofunction:: qibo.quantum_info.partial_transpose


Matrix exponentiation
"""""""""""""""""""""

Expand Down
81 changes: 80 additions & 1 deletion src/qibo/quantum_info/linalg_operations.py
Original file line number Diff line number Diff line change
Expand Up @@ -97,7 +97,9 @@ def anticommutator(operator_1, operator_2):
return operator_1 @ operator_2 + operator_2 @ operator_1


def partial_trace(state, traced_qubits: Union[List[int], Tuple[int]], backend=None):
def partial_trace(
state, traced_qubits: Union[List[int], Tuple[int, ...]], backend=None
):
"""Returns the density matrix resulting from tracing out ``traced_qubits`` from ``state``.

Total number of qubits is inferred by the shape of ``state``.
Expand Down Expand Up @@ -159,6 +161,83 @@ def partial_trace(state, traced_qubits: Union[List[int], Tuple[int]], backend=No
return backend.np.einsum("abac->bc", state)


def partial_transpose(
operator, partition: Union[List[int], Tuple[int, ...]], backend=None
):
"""Return matrix after the partial transposition of ``partition`` qubits in ``operator``.

Given a :math:`n`-qubit operator :math:`O \\in \\mathcal{H}_{A} \\otimes \\mathcal{H}_{B}`,
the partial transpose with respect to ``partition`` :math:`B` is given by

.. math::
\\begin{align}
O^{T_{B}} &= \\sum_{jklm} \\, O_{lm}^{jk} \\, \\ketbra{j}{k} \\otimes
\\left(\\ketbra{l}{m}\\right)^{T} \\\\
&= \\sum_{jklm} \\, O_{lm}^{jk} \\, \\ketbra{j}{k} \\otimes \\ketbra{m}{l} \\\\
&= \\sum_{jklm} \\, O_{lm}^{kl} \\, \\ketbra{j}{k} \\otimes \\ketbra{l}{m} \\, ,
renatomello marked this conversation as resolved.
Show resolved Hide resolved
\\end{align}

where the superscript :math:`T` indicates the transposition operation,
and :math:`T_{B}` indicates transposition on ``partition`` :math:`B`.
The total number of qubits is inferred by the shape of ``operator``.

Args:
operator (ndarray): :math:`1`- or :math:`2`-dimensional operator, or an array of
:math:`1`- or :math:`2`-dimensional operators,
partition (Union[List[int], Tuple[int, ...]]): indices of qubits to be transposed.
backend (:class:`qibo.backends.abstract.Backend`, optional): backend
to be used in the execution. If ``None``, it uses
:class:`qibo.backends.GlobalBackend`. Defaults to ``None``.

Returns:
ndarray: Partially transposed operator(s) :math:`\\O^{T_{B}}`.
"""
backend = _check_backend(backend)

shape = operator.shape
nstates = shape[0]
dims = shape[-1]
nqubits = math.log2(dims)

if not nqubits.is_integer():
raise_error(
ValueError,
f"dimensions of ``state`` (or states in a batch) must be a power of 2.",
)

if (len(shape) > 3) or (nstates == 0) or (len(shape) == 2 and nstates != dims):
raise_error(
TypeError,
"``operator`` must have dims either (k,), (k, k), (N, 1, k) or (N, k, k), "
+ f"but has dims {shape}.",
)

nqubits = int(nqubits)

if len(shape) == 1:
operator = backend.np.outer(operator, backend.np.conj(operator.T))
elif len(shape) == 3 and shape[1] == 1:
operator = backend.np.einsum(
"aij,akl->aijkl", operator, backend.np.conj(operator)
).reshape(nstates, dims, dims)

new_shape = list(range(2 * nqubits + 1))
for ind in partition:
ind += 1
new_shape[ind] = ind + nqubits
new_shape[ind + nqubits] = ind
new_shape = tuple(new_shape)

reshaped = backend.np.reshape(operator, [-1] + [2] * (2 * nqubits))
reshaped = backend.np.transpose(reshaped, new_shape)

final_shape = (dims, dims)
if len(operator.shape) == 3:
final_shape = (nstates,) + final_shape

return backend.np.reshape(reshaped, final_shape)


def matrix_exponentiation(
phase: Union[float, complex],
matrix,
Expand Down
88 changes: 88 additions & 0 deletions tests/test_quantum_info_operations.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@
commutator,
matrix_power,
partial_trace,
partial_transpose,
)
from qibo.quantum_info.metrics import purity
from qibo.quantum_info.random_ensembles import random_density_matrix, random_statevector
Expand Down Expand Up @@ -113,6 +114,93 @@ def test_partial_trace(backend, density_matrix):
backend.assert_allclose(traced, Id)


def _werner_state(p, backend):
zero, one = np.array([1, 0], dtype=complex), np.array([0, 1], dtype=complex)
psi = (np.kron(zero, one) - np.kron(one, zero)) / np.sqrt(2)
psi = np.outer(psi, np.conj(psi.T))
psi = backend.cast(psi, dtype=psi.dtype)

state = p * psi + (1 - p) * backend.identity_density_matrix(2, normalize=True)

# partial transpose of two-qubit werner state is known analytically
transposed = (1 / 4) * np.array(
[
[1 - p, 0, 0, -2 * p],
[0, p + 1, 0, 0],
[0, 0, p + 1, 0],
[-2 * p, 0, 0, 1 - p],
],
dtype=complex,
)
transposed = backend.cast(transposed, dtype=transposed.dtype)

return state, transposed


@pytest.mark.parametrize("batch", [False, True])
@pytest.mark.parametrize("statevector", [False, True])
@pytest.mark.parametrize("p", [1 / 5, 1 / 3, 1.0])
def test_partial_transpose(backend, p, statevector, batch):
with pytest.raises(ValueError):
state = random_density_matrix(3, backend=backend)
test = partial_transpose(state, [0], backend)
with pytest.raises(TypeError):
state = np.random.rand(2, 2, 2, 2).astype(complex)
state += 1j * np.random.rand(2, 2, 2, 2)
state = backend.cast(state, dtype=state.dtype)
test = partial_transpose(state, [1], backend=backend)

if statevector:
zero, one = np.array([1, 0], dtype=complex), np.array([0, 1], dtype=complex)
psi = (np.kron(zero, one) - np.kron(one, zero)) / np.sqrt(2)

# testing statevector
target = np.zeros((4, 4), dtype=complex)
target[0, 3] = -1 / 2
target[1, 1] = 1 / 2
target[2, 2] = 1 / 2
target[3, 0] = -1 / 2
target = backend.cast(target, dtype=target.dtype)

psi = backend.cast(psi, dtype=psi.dtype)

if batch:
# the inner cast is required because of torch
psi = backend.cast([backend.cast([psi]) for _ in range(2)])

transposed = partial_transpose(psi, [0], backend=backend)

if batch:
for j in range(2):
backend.assert_allclose(transposed[j], target)
else:
backend.assert_allclose(transposed, target)
else:
state, target = _werner_state(p, backend)
if batch:
state = backend.cast([state for _ in range(2)])

# partial transpose of two-qubit werner state is known analytically
target = (1 / 4) * np.array(
[
[1 - p, 0, 0, -2 * p],
[0, p + 1, 0, 0],
[0, 0, p + 1, 0],
[-2 * p, 0, 0, 1 - p],
],
dtype=complex,
)
target = backend.cast(target, dtype=target.dtype)

transposed = partial_transpose(state, [1], backend)

if batch:
for j in range(2):
backend.assert_allclose(transposed[j], target)
else:
backend.assert_allclose(transposed, target)


@pytest.mark.parametrize("power", [2, 2.0, "2"])
def test_matrix_power(backend, power):
nqubits = 2
Expand Down