Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Align default parameters with typical benchmarks #89

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
64 changes: 40 additions & 24 deletions tritonbench/operators/ragged_attention/hstu.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,15 +64,15 @@ def __init__(
self.all_ts_weights = torch.nn.Parameter(
torch.randn(
(self.num_buckets + 1,),
dtype=torch.bfloat16,
dtype=torch.float32,
)
.requires_grad_(requires_grad)
.cuda()
)
self.all_pos_weights = torch.nn.Parameter(
torch.randn(
(2 * self.max_seq_len - 1,),
dtype=torch.bfloat16,
dtype=torch.float32,
)
.requires_grad_(requires_grad)
.cuda()
Expand All @@ -81,17 +81,16 @@ def __init__(

def forward(
self,
qkv: torch.Tensor,
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
seq_offsets: torch.Tensor,
timestamps: torch.Tensor,
num_targets: torch.Tensor,
) -> torch.Tensor:
NUM_BUCKETS = self.num_buckets
torch._check(timestamps.size(0) + 1 == seq_offsets.size(0))

q = qkv[:, :, :128]
k = qkv[:, :, 128:256]
v = qkv[:, :, 256:384]
out = torch.zeros_like(v)

Z = timestamps.size(0)
Expand Down Expand Up @@ -134,13 +133,13 @@ def forward(
"DeltaSize": None,
"num_buckets": NUM_BUCKETS,
"max_pos_ind": None,
"time_bucket_incr": 60.0,
"time_bucket_incr": 60,
"time_bucket_div": 1.0,
"time_delta": 0.0,
"INVALID_MASK_TYPE": "lower_triangular",
"CAUSAL": True,
"BUCKET_FN": "sqrt",
"ATTN_BIAS_TYPE": "fused",
"ATTN_BIAS_TYPE": "ALL",
"USE_TIME_BIAS": False,
"USE_POS_BIAS": False,
"HAS_MAX_POS_IND": False,
Expand All @@ -150,7 +149,7 @@ def forward(
"ALLOW_TF32": True,
"BLOCK_D_Q": DimQ,
"BLOCK_D_V": DimV,
"MAX_ATTN_LEN": 0,
"MAX_ATTN_LEN": None,
"CONTEXTUAL_SEQ_LEN": 0,
"HAS_SORT_BY_LENGTH_INDICES": False,
"sort_by_length_indices": None,
Expand Down Expand Up @@ -219,27 +218,42 @@ def generate_sparse_seq_len(
)


try:
from hammer.benchmark.module_factory.hstu_utils import (
apply_SL,
generate_hstu_timestamps,
)
except ImportError:

def apply_SL(lengths: torch.Tensor, alpha: float, max_seq_len: int):
return lengths

def generate_hstu_timestamps(batch_size, seq_len):
ts = torch.rand(batch_size, seq_len + 1, device="cuda") ** -0.8
ts = torch.clamp(torch.abs(ts * 86400), max=1e7)
ts, _ = torch.sort(ts, dim=1)
return ts.long()


def get_test_inputs(
batch_size,
num_heads,
attn_dim,
hidden_dim,
max_seq_len,
sparsity,
target_size,
sort_by_length,
requires_grad,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
timestamp_deltas: torch.Tensor = torch.randint(
86400,
size=(batch_size, max_seq_len + 1),
).cuda()
timestamps = timestamp_deltas.cumsum(dim=1)

timestamps = generate_hstu_timestamps(batch_size, max_seq_len)
lengths = generate_sparse_seq_len(
size=batch_size,
max_seq_len=max_seq_len,
sparsity=sparsity,
device=torch.device("cuda"),
)
lengths = apply_SL(lengths, alpha=2.0, max_seq_len=max_seq_len)
# assume has_delta_q is False
num_targets = None
if target_size != 0:
Expand All @@ -254,19 +268,21 @@ def get_test_inputs(
seq_offsets = torch.zeros(
(batch_size + 1,),
dtype=torch.int64,
).cuda()
device="cuda",
)
seq_offsets[1:] = torch.cumsum(
lengths,
dim=0,
)
L = int(seq_offsets[-1].item())

qkv = (
torch.randn(
(L, num_heads, 512),
dtype=torch.bfloat16,
)
.requires_grad_(requires_grad)
.cuda()
qkv = torch.randn(
(L, num_heads, attn_dim * 2 + hidden_dim),
dtype=torch.bfloat16,
device="cuda",
)
return qkv, seq_offsets, timestamps, num_targets
q, k, v = torch.split(qkv, [attn_dim, attn_dim, hidden_dim], dim=-1)
q.requires_grad_(True)
k.requires_grad_(True)
v.requires_grad_(True)
return q, k, v, seq_offsets, timestamps, num_targets, max_seq_len
53 changes: 32 additions & 21 deletions tritonbench/operators/ragged_attention/operator.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,13 +19,15 @@

def parse_op_args(args: List[str]):
parser = argparse.ArgumentParser()
parser.add_argument("--batch-size", type=int, default=8, help="Batch size")
parser.add_argument("--batch-size", type=int, default=256, help="Batch size")
parser.add_argument("--heads", type=int, default=4, help="Number of heads")
parser.add_argument("--max-seq-len-log2", type=int, default=9)
parser.add_argument("--attn-dim", type=int, default=128)
parser.add_argument("--hidden-dim", type=int, default=128)
parser.add_argument("--max-seq-len-log2", type=int, default=15)
parser.add_argument("--num-buckets", type=int, default=2048)
parser.add_argument("--seq-sparsity", type=float, default=0.8)
parser.add_argument("--seq-sparsity", type=float, default=0.95)
parser.add_argument("--target-size", type=int, default=20)
parser.add_argument("--sort-by-length", type=bool, default=False)
parser.add_argument("--sort-by-length", type=bool, default=True)
return parser.parse_args(args)


Expand All @@ -39,71 +41,82 @@ def __init__(
args = parse_op_args(self.extra_args)
self.batch_size = args.batch_size
self.num_heads = args.heads
self.max_seq_len = 2**args.max_seq_len_log2
self.attn_dim = args.attn_dim
self.hidden_dim = args.hidden_dim
self.max_seq_len_log2 = args.max_seq_len_log2
self.num_buckets = args.num_buckets
self.sparsity = args.seq_sparsity
self.target_size = args.target_size
self.sort_by_length = args.sort_by_length
# set a default number of inputs
self._num_inputs = 10 if self._num_inputs is None else self._num_inputs
self.requires_grad = not (self.mode == Mode.FWD_NO_GRAD)

@register_benchmark()
def hstu_triton_ragged_attention(self, qkv, seq_offsets, timestamps, num_targets):
def hstu_triton_ragged_attention(
self, q, k, v, seq_offsets, timestamps, num_targets, seq_len
):
attn = RaggedHSTUAttn(
self.batch_size,
self.num_heads,
self.max_seq_len,
seq_len,
self.num_buckets,
self.sparsity,
self.target_size,
self.sort_by_length,
self.requires_grad,
persistent_kernel=False,
)
return lambda: attn(qkv, seq_offsets, timestamps, num_targets)
return lambda: attn(q, k, v, seq_offsets, timestamps, num_targets)

# TODO: enable persistent kernels when the OSS backward is ready
@register_benchmark(enabled=False)
def hstu_triton_ragged_attention_persistent(
self, qkv, seq_offsets, timestamps, num_targets
self,
q,
k,
v,
seq_offsets,
timestamps,
num_targets,
seq_len,
):
attn = RaggedHSTUAttn(
self.batch_size,
self.num_heads,
self.max_seq_len,
seq_len,
self.num_buckets,
self.sparsity,
self.target_size,
self.sort_by_length,
self.requires_grad,
persistent_kernel=True,
)
return lambda: attn(qkv, seq_offsets, timestamps, num_targets)
return lambda: attn(q, k, v, seq_offsets, timestamps, num_targets)

def get_x_val(self, example_inputs):
seq_len = example_inputs[-1]
return (
self.batch_size,
self.num_heads,
self.max_seq_len,
seq_len,
self.num_buckets,
self.sparsity,
self.target_size,
self.sort_by_length,
)

def get_input_iter(self):
for _input_id in range(self._num_inputs):
inputs = get_test_inputs(
for seq_len in [2**i for i in range(8, self.max_seq_len_log2)]:
yield get_test_inputs(
self.batch_size,
self.num_heads,
self.max_seq_len,
self.attn_dim,
self.hidden_dim,
seq_len,
self.sparsity,
self.target_size,
self.sort_by_length,
self.requires_grad,
)
yield inputs

def get_bwd_fn(self, fwd_fn: Callable[..., Any]) -> Callable[..., Any]:
o = fwd_fn()
Expand All @@ -123,9 +136,7 @@ def tflops(
f1 = 0.0
f2 = 0.0
jagged = True
qkv, seq_offsets, timestamps, num_targets = example_inputs
q = qkv[:, :, :128]
v = qkv[:, :, 256:384]
q, k, v, seq_offsets, timestamps, num_targets = example_inputs
_, nheads, attn_dim = q.shape
_, _, hidden_dim = v.shape
max_seqlen = timestamps.size(1) - 1
Expand Down
Loading