-
Notifications
You must be signed in to change notification settings - Fork 4
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[Installation][non-reproducible]: Op Flash Attention #17
Comments
Thanks for reporting the issue. Sorry that there are some sync issues going on and we are working on fixing it. |
Is there anything I can do to help? |
@antferdom Can you help verify the problem is fixed by 748a883 ? |
@xuzhao9 sure, I will try it out tomorrow |
[email protected]: available
[email protected]: available
[email protected]: available
[email protected]: available
op: (pytorch) runner@compiler-study-hopper:/workspace/tritonbench$ python run.py --op flash_attention --mode fwd
TMA benchmarks will be running without grid constant TMA descriptor.
11%|████████████████▉ | 1/9 [00:10<01:25, 10.67s/it]
In [2]: from tritonbench.utils.loader import load_library
In [3]: load_library("tk/tk_attn_h100_fwd.so")
---------------------------------------------------------------------------
OSError Traceback (most recent call last)
Cell In[3], line 1
----> 1 load_library("tk/tk_attn_h100_fwd.so")
File /workspace/tritonbench/tritonbench/utils/loader.py:9, in load_library(library_path)
7 prefix, _delimiter, so_file = library_path.partition("/")
8 so_full_path = REPO_PATH.joinpath(prefix, ".data", so_file).resolve()
----> 9 torch.ops.load_library(str(so_full_path))
File ~/miniconda3/envs/pytorch/lib/python3.11/site-packages/torch/_ops.py:1357, in _Ops.load_library(self, path)
1352 path = _utils_internal.resolve_library_path(path)
1353 with dl_open_guard():
1354 # Import the shared library into the process, thus running its
1355 # static (global) initialization code in order to register custom
1356 # operators with the JIT.
-> 1357 ctypes.CDLL(path)
1358 self.loaded_libraries.add(path)
File ~/miniconda3/envs/pytorch/lib/python3.11/ctypes/__init__.py:376, in CDLL.__init__(self, name, mode, handle, use_errno, use_last_error, winmode)
373 self._FuncPtr = _FuncPtr
375 if handle is None:
--> 376 self._handle = _dlopen(self._name, mode)
377 else:
378 self._handle = handle
OSError: /workspace/tritonbench/tritonbench/tk/.data/tk_attn_h100_fwd.so: cannot open shared object file: No such file or directory correct path -> In [1]: import torch
In [2]: torch.ops.load_library("/workspace/tritonbench/utils/tk/.data/tk_attn_h100_fwd.so")
In [3]: tk_fwd = torch.ops.tk Would be possible to access to an existing proven to run Docker container? |
The above three errors should be fixed by 7e60e23.
Create #20 to track the progress.
In the docker image, we are using different conda environments to manage the Triton versions:
|
(triton-main) runner@compiler-study-hopper:/workspace/tritonbench$ python run.py --op flash_attention --mode fwd
TMA benchmarks will be running without grid constant TMA descriptor.
0%| | 0/9 [00:01<?, ?it/s]
Caught exception, terminating early with partial results
Traceback (most recent call last):
File "/workspace/tritonbench/tritonbench/utils/triton_op.py", line 708, in run
y_vals: Dict[str, BenchmarkOperatorMetrics] = functools.reduce(
^^^^^^^^^^^^^^^^^
File "/workspace/tritonbench/tritonbench/utils/triton_op.py", line 696, in _reduce_benchmarks
acc[bm_name] = self._do_bench(
^^^^^^^^^^^^^^^
File "/workspace/tritonbench/tritonbench/utils/triton_op.py", line 915, in _do_bench
metrics.latency = triton.testing.do_bench(
^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/runner/miniconda3/envs/triton-main/lib/python3.11/site-packages/triton/testing.py", line 106, in do_bench
fn()
File "/workspace/tritonbench/tritonbench/operators/flash_attention/operator.py", line 253, in <lambda>
return lambda: triton_tutorial_FA2_tma(q, k, v, self.causal, self.sm_scale)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/runner/miniconda3/envs/triton-main/lib/python3.11/site-packages/torch/autograd/function.py", line 575, in apply
return super().apply(*args, **kwargs) # type: ignore[misc]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/workspace/tritonbench/tritonbench/kernels/triton_fused_attention.py", line 1147, in forward
_attn_fwd_tma[grid_tma](
File "/home/runner/miniconda3/envs/triton-main/lib/python3.11/site-packages/triton/runtime/jit.py", line 345, in <lambda>
return lambda *args, **kwargs: self.run(grid=grid, warmup=False, *args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/runner/miniconda3/envs/triton-main/lib/python3.11/site-packages/triton/runtime/autotuner.py", line 156, in run
timings = {config: self._bench(*args, config=config, **kwargs) for config in pruned_configs}
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/runner/miniconda3/envs/triton-main/lib/python3.11/site-packages/triton/runtime/autotuner.py", line 156, in <dictcomp>
timings = {config: self._bench(*args, config=config, **kwargs) for config in pruned_configs}
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/runner/miniconda3/envs/triton-main/lib/python3.11/site-packages/triton/runtime/autotuner.py", line 133, in _bench
return do_bench(kernel_call, warmup=self.num_warmups, rep=self.num_reps, quantiles=(0.5, 0.2, 0.8))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/runner/miniconda3/envs/triton-main/lib/python3.11/site-packages/triton/testing.py", line 106, in do_bench
fn()
File "/home/runner/miniconda3/envs/triton-main/lib/python3.11/site-packages/triton/runtime/autotuner.py", line 114, in kernel_call
self.fn.run(
File "/home/runner/miniconda3/envs/triton-main/lib/python3.11/site-packages/triton/runtime/jit.py", line 683, in run
grid = grid(bound_args)
^^^^^^^^^^^^^^^^
File "/workspace/tritonbench/tritonbench/kernels/triton_fused_attention.py", line 1086, in grid_tma
desc_helper.fill_2d_tma_descriptor(
File "/workspace/tritonbench/tritonbench/kernels/triton_fused_attention.py", line 101, in fill_2d_tma_descriptor
self.fill_2d_tma_descriptor_inner(
TypeError: a bytes-like object is required, not 'int'
(Batch, Heads, SeqLen, Dhead) Environment information Collecting environment information...
PyTorch version: 2.6.0.dev20241028+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.30.5
Libc version: glibc-2.35
Python version: 3.11.10 (main, Oct 3 2024, 07:29:13) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.15.0-117-generic-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.4.131
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: NVIDIA H100 80GB HBM3
Nvidia driver version: 550.90.12
cuDNN version: Probably one of the following:
/usr/local/cuda-12.4/targets/x86_64-linux/lib/libcudnn.so.9.1.0
/usr/local/cuda-12.4/targets/x86_64-linux/lib/libcudnn_adv.so.9.1.0
/usr/local/cuda-12.4/targets/x86_64-linux/lib/libcudnn_cnn.so.9.1.0
/usr/local/cuda-12.4/targets/x86_64-linux/lib/libcudnn_engines_precompiled.so.9.1.0
/usr/local/cuda-12.4/targets/x86_64-linux/lib/libcudnn_engines_runtime_compiled.so.9.1.0
/usr/local/cuda-12.4/targets/x86_64-linux/lib/libcudnn_graph.so.9.1.0
/usr/local/cuda-12.4/targets/x86_64-linux/lib/libcudnn_heuristic.so.9.1.0
/usr/local/cuda-12.4/targets/x86_64-linux/lib/libcudnn_ops.so.9.1.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical, 57 bits virtual
Byte Order: Little Endian
CPU(s): 30
On-line CPU(s) list: 0-29
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R) Platinum 8462Y+
CPU family: 6
Model: 143
Thread(s) per core: 1
Core(s) per socket: 1
Socket(s): 30
Stepping: 8
BogoMIPS: 5600.00
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl xtopology cpuid tsc_known_freq pni pclmulqdq vmx ssse3 fma cx16 pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves avx_vnni avx512_bf16 wbnoinvd arat avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b fsrm md_clear serialize tsxldtrk avx512_fp16 arch_capabilities
Virtualization: VT-x
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 960 KiB (30 instances)
L1i cache: 960 KiB (30 instances)
L2 cache: 120 MiB (30 instances)
L3 cache: 480 MiB (30 instances)
NUMA node(s): 1
NUMA node0 CPU(s): 0-29
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Unknown: No mitigations
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Mitigation; TSX disabled
Versions of relevant libraries:
[pip3] mypy-extensions==1.0.0
[pip3] numpy==2.1.2
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-cusparselt-cu12==0.6.2
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pytorch-triton==3.1.0+cf34004b8a
[pip3] torch==2.6.0.dev20241028+cu124
[pip3] triton==3.0.0+git8cdba567
[conda] magma-cuda124 2.6.1 1 pytorch
[conda] numpy 2.1.2 pypi_0 pypi
[conda] nvidia-cublas-cu12 12.4.5.8 pypi_0 pypi
[conda] nvidia-cuda-cupti-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cuda-nvrtc-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cuda-runtime-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi
[conda] nvidia-cufft-cu12 11.2.1.3 pypi_0 pypi
[conda] nvidia-curand-cu12 10.3.5.147 pypi_0 pypi
[conda] nvidia-cusolver-cu12 11.6.1.9 pypi_0 pypi
[conda] nvidia-cusparse-cu12 12.3.1.170 pypi_0 pypi
[conda] nvidia-cusparselt-cu12 0.6.2 pypi_0 pypi
[conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi
[conda] nvidia-nvjitlink-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-nvtx-cu12 12.4.127 pypi_0 pypi
[conda] pytorch-triton 3.1.0+cf34004b8a pypi_0 pypi
[conda] torch 2.6.0.dev20241028+cu124 pypi_0 pypi
[conda] triton 3.0.0+git8cdba567 pypi_0 pypi |
For the flash-attention operator there are two problems:
|
Will be pending of the open PR, but both the TK import pathing problem and xformers, look good to me. |
For 2), you could use |
Summary: As mentioned in #17 Pull Request resolved: #22 Test Plan: ``` (base) ➜ tritonbench git:(xz9/fix-tk-load) python -c "from tritonbench.utils.loader import load_library; load_library('tk/tk_attn_h100_fwd.so')" (base) ➜ tritonbench git:(xz9/fix-tk-load) echo $? 0 ``` Reviewed By: FindHao Differential Revision: D65147532 Pulled By: xuzhao9 fbshipit-source-id: 669b2aa4db9b0581a2dbf709e9b577dbbe5e670e
True, I will use the |
Using the latest Tritonbench Docker image, I was finally able to fully run the /workspace/tritonbench$ python run.py --op flash_attention --mode fwd --precision bf16
TMA benchmarks will be running without grid constant TMA descriptor.
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 9/9 [01:05<00:00, 7.25s/it]
(Batch, Heads, SeqLen, Dhead) sdpa-latency aten-latency flash_v2-latency flash_v3-latency triton_tutorial_flash_v2-latency triton_tutorial_flash_v2_tma-latency flex_attention-latency
------------------------------- -------------- -------------- ------------------ ------------------ ---------------------------------- -------------------------------------- ------------------------
(32, 32, 512, 64) 0.262816 2.88429 0.253344 0.212928 0.204864
(16, 32, 1024, 64) 0.483936 5.64954 0.461056 0.360672 0.371744
(8, 32, 2048, 64) 0.928736 13.2899 0.900224 0.621792 0.685088
(4, 32, 4096, 64) 1.81328 23.6284 1.74131 1.18486 1.38013
(2, 32, 8192, 64) 3.59718 45.2292 3.44819 2.19107 2.62384
(1, 32, 16384, 64) 7.15782 6.85792 4.28938 5.21392 5.20269
(4, 32, 19, 128) 0.009248 0.032416 0.01328 0.012032 0.00832 0.099776
(4, 32, 1, 128) 0.009056 0.025888 0.013888 0.01152 0.007904 0.098656
(4, 32, 511, 128) 0.066976 0.54688 0.065312 0.048288 0.060288 0.082976 Nevertheless, many attention implementations are registered as
|
#58 fixes as many the impls as we can. |
The current project repository assumes existing submodules directory for all the optional dependencies. The Python installation script executes
checkout_submodules
but that’s again only relevant if submodule dir is populated accordingly (git submodule add
). The following represents the expected.gitmodules
:Then we execute
git submodule update --init --recursive
.Dockerfile
Two final steps of the Docker image building are commented because they reference bash installation scripts from a non-existing
.ci
directory, presumably available in the Meta's internal repo. The commented Dockerfile:Instead, we execute the container in interactive mode (
docker exec -it
), and based on the comment of that script, build Triton from source.@xuzhao9
The text was updated successfully, but these errors were encountered: