-
Notifications
You must be signed in to change notification settings - Fork 29
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
stack-info: PR: #84, branch: drisspg/stack/2
- Loading branch information
Showing
1 changed file
with
247 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,247 @@ | ||
import functools | ||
import logging | ||
import torch | ||
import torch.nn.functional as F | ||
import json | ||
import argparse | ||
from torch.nn.attention.flex_attention import flex_attention | ||
from typing import Callable, Dict, List, Tuple, Optional | ||
from enum import Enum, auto | ||
from torch.optim import Adam | ||
from torch.utils.data import DataLoader, TensorDataset | ||
from tqdm import tqdm | ||
|
||
logging.basicConfig( | ||
level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s" | ||
) | ||
logger = logging.getLogger(__name__) | ||
|
||
|
||
class BiasType(Enum): | ||
RELATIVE_1D = "relative_1d" | ||
ABSOLUTE_2D = "absolute_2d" | ||
HEAD_SPECIFIC = "head_specific" | ||
BATCH_HEAD = "batch_head" | ||
MULTIPLICATIVE = "multiplicative" | ||
LOCAL_WINDOW = "local_window" | ||
GLOBAL_TOKENS = "global_tokens" | ||
WEIRD = "weird" | ||
OFFSET = "offset" | ||
|
||
|
||
class AttentionTrainer: | ||
|
||
def __init__( | ||
self, | ||
batch_size: int = 8, | ||
num_heads: int = 4, | ||
seq_length: int = 256, | ||
head_dim: int = 64, | ||
device: str = "cuda", | ||
dtype: torch.dtype = torch.float32, | ||
window_size: int = 16, | ||
learning_rate: float = 1e-1, | ||
): | ||
self.B = batch_size | ||
self.H = num_heads | ||
self.S = seq_length | ||
self.D = head_dim | ||
self.W = window_size | ||
self.device = device | ||
self.dtype = dtype | ||
self.lr = learning_rate | ||
self.which_bias = torch.tensor(0, device=device) | ||
self.offset = None | ||
|
||
# Initialize bias generators and functions like in the original | ||
self.bias_generators = { | ||
BiasType.RELATIVE_1D: self._generate_relative_1d_bias, | ||
BiasType.ABSOLUTE_2D: self._generate_absolute_2d_bias, | ||
BiasType.HEAD_SPECIFIC: self._generate_head_specific_bias, | ||
BiasType.BATCH_HEAD: self._generate_batch_head_bias, | ||
BiasType.MULTIPLICATIVE: self._generate_multiplicative_bias, | ||
BiasType.LOCAL_WINDOW: self._generate_local_window_bias, | ||
BiasType.GLOBAL_TOKENS: self._generate_global_tokens_bias, | ||
BiasType.WEIRD: self._generate_weird_bias, | ||
BiasType.OFFSET: self._generate_offset_bias, | ||
} | ||
|
||
# Copy the bias application functions from the original | ||
self.bias_functions = { | ||
BiasType.RELATIVE_1D: self._apply_relative_1d_bias, | ||
BiasType.ABSOLUTE_2D: self._apply_absolute_2d_bias, | ||
BiasType.HEAD_SPECIFIC: self._apply_head_specific_bias, | ||
BiasType.BATCH_HEAD: self._apply_batch_head_bias, | ||
BiasType.MULTIPLICATIVE: self._apply_multiplicative_bias, | ||
BiasType.LOCAL_WINDOW: self._apply_local_window_bias, | ||
BiasType.GLOBAL_TOKENS: self._apply_global_tokens_bias, | ||
BiasType.WEIRD: self._apply_weird_bias, | ||
BiasType.OFFSET: self._apply_offset_bias, | ||
} | ||
|
||
def _generate_tensor(self, *size): | ||
return torch.randn( | ||
*size, device=self.device, dtype=self.dtype, requires_grad=True | ||
) | ||
|
||
# Bias Generators | ||
|
||
def _generate_relative_1d_bias(self): | ||
return self._generate_tensor(2 * self.S) | ||
|
||
def _generate_absolute_2d_bias(self): | ||
return self._generate_tensor(self.S, self.S) | ||
|
||
def _generate_head_specific_bias(self): | ||
return self._generate_tensor(self.H, self.S, self.S) | ||
|
||
def _generate_batch_head_bias(self): | ||
return self._generate_tensor(self.B, self.H, self.S, self.S) | ||
|
||
def _generate_multiplicative_bias(self): | ||
return self._generate_tensor(self.S) | ||
|
||
def _generate_local_window_bias(self): | ||
return self._generate_tensor(2 * self.W + 1) | ||
|
||
def _generate_learned_pattern_bias(self): | ||
return self._generate_tensor(self.H, self.D) | ||
|
||
def _generate_global_tokens_bias(self): | ||
return self._generate_tensor(self.S) | ||
|
||
def _generate_weird_bias(self): | ||
return self._generate_tensor(self.B, self.H, 4, self.S) | ||
|
||
def _generate_offset_bias(self): | ||
# Generate both the bias and offset tensors | ||
bias = self._generate_tensor(self.S) | ||
self.offset = torch.randint(0, self.S, (self.S,), device=self.device) | ||
return bias | ||
|
||
# Bias Application Functions | ||
def _apply_relative_1d_bias(self, score, b, h, q_idx, kv_idx, bias): | ||
return score + bias[torch.abs(q_idx - kv_idx)] | ||
|
||
def _apply_absolute_2d_bias(self, score, b, h, q_idx, kv_idx, bias): | ||
return score + bias[q_idx, kv_idx] | ||
|
||
def _apply_head_specific_bias(self, score, b, h, q_idx, kv_idx, bias): | ||
return score + bias[h, q_idx, kv_idx] | ||
|
||
def _apply_batch_head_bias(self, score, b, h, q_idx, kv_idx, bias): | ||
return score + bias[b, h, q_idx, kv_idx] | ||
|
||
def _apply_multiplicative_bias(self, score, b, h, q_idx, kv_idx, bias): | ||
return score * bias[q_idx] | ||
|
||
def _apply_local_window_bias(self, score, b, h, q_idx, kv_idx, bias): | ||
window_idx = torch.clamp(q_idx - kv_idx + self.W, 0, 2 * self.W) | ||
return score + bias[window_idx] | ||
|
||
def _apply_global_tokens_bias(self, score, b, h, q_idx, kv_idx, bias): | ||
return score + bias[kv_idx] | ||
|
||
def _apply_weird_bias(self, score, b, h, q_idx, kv_idx, bias): | ||
return score + bias[b, h, self.which_bias, q_idx] | ||
|
||
def _apply_offset_bias(self, score, b, h, q_idx, kv_idx, bias): | ||
return score + bias[self.offset[q_idx]] | ||
|
||
# Copy all the bias generator and application methods from the original class | ||
# [Previous methods remain the same as in the original code] | ||
|
||
def generate_dummy_data(self, num_samples: int) -> TensorDataset: | ||
"""Generate dummy training data.""" | ||
queries = torch.randn( | ||
num_samples, self.B, self.H, self.S, self.D, device=self.device | ||
) | ||
keys = torch.randn( | ||
num_samples, self.B, self.H, self.S, self.D, device=self.device | ||
) | ||
values = torch.randn( | ||
num_samples, self.B, self.H, self.S, self.D, device=self.device | ||
) | ||
|
||
# Generate dummy targets (for this example, we'll try to predict specific patterns) | ||
targets = torch.randn( | ||
num_samples, self.B, self.H, self.S, self.D, device=self.device | ||
) | ||
|
||
return TensorDataset(queries, keys, values, targets) | ||
|
||
def train( | ||
self, | ||
bias_type: BiasType = BiasType.RELATIVE_1D, | ||
num_epochs: int = 10, | ||
num_samples: int = 2, | ||
batch_size: int = 4, | ||
): | ||
"""Train the attention model with the specified bias type.""" | ||
# Generate bias parameters | ||
bias = self.bias_generators[bias_type]() | ||
optimizer = Adam([bias], lr=self.lr) | ||
|
||
# Generate dummy dataset | ||
dataset = self.generate_dummy_data(num_samples) | ||
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True) | ||
|
||
# Create bias function closure | ||
def bias_func(score, b, h, q_idx, kv_idx): | ||
return self.bias_functions[bias_type](score, b, h, q_idx, kv_idx, bias) | ||
|
||
# Compile the attention function | ||
flex_compiled = torch.compile( | ||
flex_attention, backend="eager", fullgraph=True, dynamic=False | ||
) | ||
|
||
# Training loop | ||
for epoch in range(num_epochs): | ||
total_loss = 0.0 | ||
with tqdm(dataloader, desc=f"Epoch {epoch+1}/{num_epochs}") as pbar: | ||
for batch_idx, (q_batch, k_batch, v_batch, targets) in enumerate(pbar): | ||
q_batch.requires_grad_() | ||
optimizer.zero_grad() | ||
|
||
# Forward pass | ||
outputs = flex_compiled( | ||
q_batch[0], k_batch[0], v_batch[0], score_mod=bias_func | ||
) | ||
|
||
# Compute loss (MSE for this example) | ||
loss = F.mse_loss(outputs, targets[0]) | ||
|
||
# Backward pass | ||
loss.backward() | ||
optimizer.step() | ||
|
||
total_loss += loss.item() | ||
pbar.set_postfix({"loss": f"{loss.item():.6f}"}) | ||
|
||
avg_loss = total_loss / len(dataloader) | ||
logger.info(f"Epoch {epoch+1}/{num_epochs}, Average Loss: {avg_loss:.6f}") | ||
|
||
return bias, avg_loss | ||
|
||
|
||
def main( | ||
bias_type: BiasType = BiasType.RELATIVE_1D, | ||
num_epochs: int = 10, | ||
num_samples: int = 2, | ||
batch_size: int = 4, | ||
): | ||
trainer = AttentionTrainer() | ||
trained_bias, final_loss = trainer.train( | ||
bias_type=bias_type, | ||
num_epochs=num_epochs, | ||
num_samples=num_samples, | ||
batch_size=batch_size, | ||
) | ||
|
||
logger.info(f"Final loss: {final_loss:.6f}") | ||
|
||
|
||
if __name__ == "__main__": | ||
from jsonargparse import CLI | ||
|
||
CLI(main) |