Skip to content

prasshantg/personal

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

60 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Getting started with NVDLA

NVDLA enables accelerating neural network inference job which is achieved in two steps

  1. Optimize trained neural network for DLA hardware and convert the graph to DLA HW instructions. This converted graph is saved to a flatbuffer file called as loadable. This is achieved using NVDLA compiler and performed offline on host system.
  2. Run inference job on DLA using loadable from step 1. This is achieved using NVDLA runtime and performed on target system.

Run Test Application

This section explains how to run test application on available NVDLA platforms and dependencies for it. First dependency to run test application is loadable generated from NVDLA compiler. Refer to NVDLA Compiler for more details to generate loadable for a network.

ResNet-50 model from https://github.com/KaimingHe/deep-residual-networks is verified on this platform for all configurations (nv_full/nv_large/nv_small) and it can be used to start with.

Virtual platform with pre-built binaries

This section explains how to run test application on docker container which has pre-built binaries for nv_full configuration.

Pull docker container

docker pull nvdla/vp
docker run -it -v /home:/home nvdla/vp

Run Simulator

cd /usr/local/nvdla
export SC_SIGNAL_WRITE_CHECK=DISABLE
aarch64_toplevel -c aarch64_nvdla.lua
mount -t 9p -o trans=virtio r /mnt

Insert kernel driver modules

cd /mnt
insmod drm.ko
insmod opendla_1.ko

Expected output after installing NVDLA driver

[  310.625140] opendla: loading out-of-tree module taints kernel.
[  310.629362] 0 . 12 . 5
[  310.629567] reset engine done
[  310.633122] [drm] Initialized nvdla 0.0.0 20171017 for 10200000.nvdla on minor 0

Run test application

./nvdla_runtime --loadable fast-math.nvdla --image 0000.jpg
fast-math.nvdla : loadable generated from NVDLA compiler
0000.jpg : 224x224 image for ResNet-50 model

Note:

It takes very long to execute ResNet-50 on virtual platform. It took ~2.5hrs for fp16 and ~5hrs for int8. Sometimes it looks like hang but wait.

Exit NVDLA virtual simulator

ctrl+a x

Virtual platform from scratch

This section explains how to run test application on virtual platform without any pre-built binaries. Assumption: Host system is Ubuntu16.04

  1. Install system requirements as per System Requirements for Virtual Platform
  2. Build and install Buildroot
  3. Create required directories
mkdir -p /usr/local/nvdla/images/linux-4.13.3
  1. Copy Linux kernel image, rootfs and drm driver
cp {buildroot-root}/output/images/Image /usr/local/nvdla/images/linux-4.13.3/
cp {buildroot-root}/output/images/rootfs.ext4 /usr/local/nvdla/images/linux-4.13.3/
cp {buildroot-root}/output/build/linux-4.13.3/drivers/gpu/drm/drm.ko /usr/local/nvdla/
  1. Build NVDLA Kernel Driver
  2. Copy NVDLA kernel driver
cp {sw-repo-root}/kmd/port/linux/opendla.ko /usr/local/nvdla/
  1. Build virtual simulator
  2. Install virtual simulator
cp {vp-repo-root}/build/bin/aarch64_toplevel /usr/bin/
cp {vp-repo-root}/build/lib/libcosim_sc_wrapper.so /usr/lib/
cp {vp-repo-root}/build/lib/libnvdla.so /usr/lib/
cp {vp-repo-root}/build/lib/libqbox-nvdla.so /usr/lib/
cp {vp-repo-root}/build/lib/liblog.so /usr/lib/
cp {vp-repo-root}/build/lib/libnvdla_cmod.so /usr/lib/
cp {vp-repo-root}/build/lib/libsimplecpu.so /usr/lib/
cp {vp-repo-root}/conf/aarch64_nvdla.lua /usr/lib/
cp {vp-repo-root}/libs/qbox.build/share/qemu/efi-virtio.rom /usr/local/nvdla
  1. Build NVDLA runtime
  2. Copy runtime lib and app
cp {sw-repo-root}/umd/out/apps/runtime/nvdla_runtime/nvdla_runtime /usr/local/nvdla
cp {sw-repo-root}/umd/out/core/src/runtime/libnvdla_runtime/libnvdla_runtime.so /usr/local/nvdla
  1. Download ResNet-50 caffe model from https://github.com/KaimingHe/deep-residual-networks
  2. Generate loadable using NVDLA Compiler
  3. Run simulator
  4. Insert kernel driver modules
  5. Run application
  6. Exit virtual simulator

FireSim

This section explains how to run ResNet-50 caffe model on FireSim platform. This platform supports only nv_large and nv_small configurations currently.

  1. If FireSim setup is not done then do the setup and come back, otherwise jump to step 2.
  2. Configure FireSim for NVDLA (nv_large/nv_small)
  3. Build NVDLA runtime for RISC-V
export TOP={firesim-nvdla-repo}/sw/firesim-software/nvdla/sw/umd
make TOOLCHAIN_PREFIX={firesim-nvdla-repo}/riscv-tools-install/bin/riscv64-unknown-linux-gnu- runtime
  1. Copy NVDLA runtime lib and test application
cp {firesim-nvdla-repo}/sw/firesim-software/nvdla/sw/umd/out/core/src/runtime/libnvdla_runtime/libnvdla_runtime.so {firesim-nvdla-repo}/sw/firesim-software/workloads/nvdla/overlay/root/nvdla/
cp {firesim-nvdla-repo}/sw/firesim-software/nvdla/sw/umd/out/apps/runtime/nvdla_runtime/nvdla_runtime {firesim-nvdla-repo}/sw/firesim-software/workloads/nvdla/overlay/root/nvdla/
  1. Copy loadable and image
cp {some-path}/fast-math.nvdla {firesim-nvdla-repo}/sw/firesim-software/workloads/nvdla/overlay/root/nvdla/
cp {some-path}/0000.jpg {firesim-nvdla-repo}/sw/firesim-software/workloads/nvdla/overlay/root/nvdla/
  1. Build NVDLA software
cd firesim-nvdla/sw/firesim-software
./marshal -v build workloads/nvdla.json
./marshal install workloads/nvdla.json
  1. Launch simulation
  2. After login to the system run NVDLA runtime test application
./nvdla_runtime --loadable fast-math.nvdla --image 0000.jpg

NVDLA Compiler

NVDLA compiler is used to optimize neural network for DLA HW architecture and create list of HW instructions to run inference on DLA. NVDLA compiler can be built from source code or directly use pre-compiled binary

Help

Usage: ./nvdla_compiler [options] --prototxt <prototxt_file> --caffemodel <caffemodel_file>
where options include:
-h                                              print this help message
-o <outputpath>                                 outputs wisdom files in 'outputpath' directory
--profile <basic|default|performance|fast-math> computation profile (default: fast-math)
--cprecision <fp16|int8>                        compute precision (default: fp16)
--configtarget <nv_full|nv_large|nv_small>      target platform (default: nv_full)
--calibtable <int8 calibration table>           calibration table for INT8 networks (default: 0.00787)
--quantizationMode <per-kernel|per-filter>      quantization mode for INT8 (default: per-kernel)
--batch                                         batch size (default: 1)
--informat <ncxhwx|nchw|nhwc>                   input data format (default: nhwc)

Example compiling ResNet-50 for nv_small

./nvdla_compiler --prototxt ResNet-50-deploy.prototxt --caffemodel ResNet-50-model.caffemodel -o . --profile fast-math --cprecision int8 --configtarget nv_small --calibtable resnet50.json --quantizationMode per-filter --batch 1 --informat nhwc

Example compiling ResNet-50 for nv_large

./nvdla_compiler --prototxt ResNet-50-deploy.prototxt --caffemodel ResNet-50-model.caffemodel -o . --profile fast-math --cprecision int8 --configtarget nv_large --calibtable resnet50.json --quantizationMode per-filter --batch 1 --informat nhwc

Example compiling ResNet-50 for nv_full fp16

./nvdla_compiler --prototxt ResNet-50-deploy.prototxt --caffemodel ResNet-50-model.caffemodel -o . --profile fast-math --cprecision fp16 --configtarget nv_full --batch 1 --informat nhwc

Example compiling ResNet-50 for nv_full int8

./nvdla_compiler --prototxt ResNet-50-deploy.prototxt --caffemodel ResNet-50-model.caffemodel -o . --profile fast-math --cprecision int8 --configtarget nv_full --calibtable resnet50.json --quantizationMode per-filter --batch 1 --informat nhwc

Output

Once the compilation is successful, it will generate .nvdla file in output directort specified using -o argument. For example, in above case it will generate fast-math.nvdla in curren directory.

Modifying NVDLA Compiler

NVDLA Compiler can be updated using source code and rebuild as below

export TOP={sw-repo-root}/umd
make compiler

Note :
In some cases if compiler build fails because of linking error with protobuf library then rebuild protobuf library as below
./configure --enable-shared
make
make check
sudo make install

NVDLA Runtime

NVDLA compiler is used to run inference on DLA platform using loadable generated from NVDLA compiler. NVDLA runtime can be built from source code or directly use pre-compiled binary arm64 or risc-v

Help

Usage: ./nvdla_runtime [-options] --loadable <loadable_file>
where options include:
-h                    print this help message
-s                    launch test in server mode
--image <file>        input jpg/pgm file
--normalize <value>   normalize value for input image
--mean <value>        comma separated mean value for input image
--rawdump             dump raw dimg data

Example running ResNet-50 on nv_small

./nvdla_runtime --loadable fast-math.nvdla --image 0000.jpg --rawdump

Modifying NVDLA Runtime

NVDLA Runtime can be updated using source code and rebuild as below

export TOP={sw-repo-root}/umd
make TOOLCHAIN_PREFIX=<path_to_toolchanin> runtime

For example:

ARM64
export TOP={sw-repo-root}/umd
make TOOLCHAIN_PREFIX={buildroot-root}/output/host/bin/aarch64-linux-gnu- runtime

RISC-V
export TOP={firesim-nvdla-repo}/sw/firesim-software/nvdla/sw/umd
make TOOLCHAIN_PREFIX={firesim-nvdla-repo}/riscv-tools-install/bin/riscv64-unknown-linux-gnu- runtime

Note:

ARM64 build is dependent on buildroot installation.

RISC-V build is dependent on RISC-V tools installation

NVDLA Kernel Driver

ARM64

NVDLA Kernel Driver for ARM64 virtual platform is loaded as a kernel module. It's source code is at https://github.com/nvdla/sw/tree/master/kmd and pre-built binary is at https://github.com/nvdla/sw/blob/master/prebuilt/arm64-linux/

Register mappings for nv_small/nv_large and nv_full configurations are different and hence pre-built includes two binaries:

  • opendla_1.ko : for nv_full
  • opendla_2.ko : for nv_large and nv_small

Updating driver

Note:

define DLA_2_CONFIG if you want to build driver for nv_small or nv_large configuration otherwise keep it undefined
make KDIR={buildroot-root}/output/build/linux-4.13.3 ARCH=arm64 CROSS_COMPILE={buildroot-root}/output/host/bin/aarch64-linux-gnu-

Refer to buildroot for Linux kernel and toolchain

RISC-V

Currently only FireSim is available as an RISC-V platform. NVDLA Kernel Driver is integrated as part of Linux kernel and present at https://github.com/nvdla/riscv-linux/tree/firesim-nvdla/drivers/nvdla riscv-linux repo is present as sub-module in https://github.com/nvdla/firesim-nvdla and not required to clone separately. It will get cloned and built as part of FireSim setup.

Updating driver

If you want to update NVDLA kernel driver then update code at {firesim-nvdla-repo-root}/sw/firesim-software/risc-linux/drivers/nvdla and run below commands to build and install driver from {firesim-nvdla-repo-root}/sw/firesim-software/

./marshal -v build workloads/nvdla.json
./marshal install workloads/nvdla.json

NVDLA Platforms

Below platforms are available for NVDLA development and verification

Virtual Platform

More details at http://nvdla.org/vp.html

Docker container has pre-installed all system requirements to build virtual simulator. If not using docker container then refer to installing system requirements.

nv_full

git clone https://github.com/nvdla/hw.git 
cd hw
git checkout origin/nvdla1
make

Options to select for nv_full configuration

Enter project names      (Press ENTER to use: nv_full):nv_full
Enter c pre-processor path (Press ENTER to use: /home/utils/gcc-4.9.3/bin/cpp):/usr/bin/cpp
Enter g++ path           (Press ENTER to use: /home/utils/gcc-4.9.3/bin/g++):/usr/bin/g++
Enter perl path          (Press ENTER to use: /home/utils/perl-5.8.8/bin/perl):/usr/bin/perl
Enter java path          (Press ENTER to use: /home/utils/java/jdk1.8.0_131/bin/java):/usr/bin/java
Enter systemc path       (Press ENTER to use: /usr/local/systemc-2.3.0/):
OPTIONAL: Enter verilator path (Press ENTER to use: verilator):
OPTIONAL: Enter clang path     (Press ENTER to use: clang):
 tools/bin/tmake -build cmod_top

Download and Build VP

git clone https://github.com/nvdla/vp.git
cd vp
git submodule update --init --recursive
cmake -DCMAKE_INSTALL_PREFIX=[install dir] -DSYSTEMC_PREFIX=[systemc prefix] -DNVDLA_HW_PREFIX=[nvdla_hw prefix] -DNVDLA_HW_PROJECT=[nvdla_hw project name]

For example:
cmake -DCMAKE_INSTALL_PREFIX=build -DSYSTEMC_PREFIX=/usr/local/systemc-2.3.0/ -DNVDLA_HW_PREFIX=/odla/vpr/nv_full -DNVDLA_HW_PROJECT=nv_full
make
make install

nv_large

git clone https://github.com/nvdla/hw.git 
cd hw
git checkout origin/master
make

Options to select for nv_large configuration

Enter project names      (Press ENTER if use: nv_small nv_small_256 nv_small_256_full nv_medium_512 nv_medium_1024_full nv_large):nv_large
Using designware or not [1 for use/0 for not use] (Press ENTER if use: 1):
Enter design ware path (Press ENTER if use: /home/tools/synopsys/syn_2011.09/dw/sim_ver):
Enter c pre-processor path (Press ENTER if use: /home/utils/gcc-4.8.2/bin/cpp):/usr/bin/cpp
Enter gcc path             (Press ENTER if use: /home/utils/gcc-4.8.2/bin/gcc):/usr/bin/gcc
Enter g++ path             (Press ENTER if use: /home/utils/gcc-4.8.2/bin/g++):/usr/bin/g++
Enter perl path            (Press ENTER if use: /home/utils/perl-5.10/5.10.0-threads-64/bin/perl):/usr/bin/perl
Enter java path            (Press ENTER if use: /home/utils/java/jdk1.8.0_131/bin/java):/usr/bin/java
Enter systemc path         (Press ENTER if use: /home/ip/shared/inf/SystemC/1.0/20151112/systemc-2.3.0/GCC472_64_DBG):/usr/local/systemc-2.3.0
Enter python path          (Press ENTER if use: /home/tools/continuum/Anaconda3-5.0.1/bin/python):/usr/bin/python
Enter vcs_home path        (Press ENTER if use: /home/tools/vcs/mx-2016.06-SP2-4):
Enter novas_home path      (Press ENTER if use: /home/tools/debussy/verdi3_2016.06-SP2-9):
Enter verdi_home path      (Press ENTER if use: /home/tools/debussy/verdi3_2016.06-SP2-9):
OPTIONAL: Enter verilator path (Press ENTER to use: verilator):
OPTIONAL: Enter clang path     (Press ENTER to use: /home/utils/llvm-4.0.1/bin/clang):
 tools/bin/tmake -build cmod_top

Download and Build VP

git clone https://github.com/nvdla/vp.git
cd vp
git submodule update --init --recursive
cmake -DCMAKE_INSTALL_PREFIX=[install dir] -DSYSTEMC_PREFIX=[systemc prefix] -DNVDLA_HW_PREFIX=[nvdla_hw prefix] -DNVDLA_HW_PROJECT=[nvdla_hw project name]

For example:
cmake -DCMAKE_INSTALL_PREFIX=build -DSYSTEMC_PREFIX=/usr/local/systemc-2.3.0/ -DNVDLA_HW_PREFIX=/odla/vpr/nv_large -DNVDLA_HW_PROJECT=nv_large
make
make install
nv_small
git clone https://github.com/nvdla/hw.git 
cd hw
git checkout origin/master
make

Options to select for nv_small configuration

Enter project names      (Press ENTER if use: nv_small nv_small_256 nv_small_256_full nv_medium_512 nv_medium_1024_full nv_large):nv_small
Using designware or not [1 for use/0 for not use] (Press ENTER if use: 1):
Enter design ware path (Press ENTER if use: /home/tools/synopsys/syn_2011.09/dw/sim_ver):
Enter c pre-processor path (Press ENTER if use: /home/utils/gcc-4.8.2/bin/cpp):/usr/bin/cpp
Enter gcc path             (Press ENTER if use: /home/utils/gcc-4.8.2/bin/gcc):/usr/bin/gcc
Enter g++ path             (Press ENTER if use: /home/utils/gcc-4.8.2/bin/g++):/usr/bin/g++
Enter perl path            (Press ENTER if use: /home/utils/perl-5.10/5.10.0-threads-64/bin/perl):/usr/bin/perl
Enter java path            (Press ENTER if use: /home/utils/java/jdk1.8.0_131/bin/java):/usr/bin/java
Enter systemc path         (Press ENTER if use: /home/ip/shared/inf/SystemC/1.0/20151112/systemc-2.3.0/GCC472_64_DBG):/usr/local/systemc-2.3.0
Enter python path          (Press ENTER if use: /home/tools/continuum/Anaconda3-5.0.1/bin/python):/usr/bin/python
Enter vcs_home path        (Press ENTER if use: /home/tools/vcs/mx-2016.06-SP2-4):
Enter novas_home path      (Press ENTER if use: /home/tools/debussy/verdi3_2016.06-SP2-9):
Enter verdi_home path      (Press ENTER if use: /home/tools/debussy/verdi3_2016.06-SP2-9):
OPTIONAL: Enter verilator path (Press ENTER to use: verilator):
OPTIONAL: Enter clang path     (Press ENTER to use: /home/utils/llvm-4.0.1/bin/clang):
 tools/bin/tmake -build cmod_top

Download and Build VP

git clone https://github.com/nvdla/vp.git
cd vp
git submodule update --init --recursive
cmake -DCMAKE_INSTALL_PREFIX=[install dir] -DSYSTEMC_PREFIX=[systemc prefix] -DNVDLA_HW_PREFIX=[nvdla_hw prefix] -DNVDLA_HW_PROJECT=[nvdla_hw project name]

For example:
cmake -DCMAKE_INSTALL_PREFIX=build -DSYSTEMC_PREFIX=/usr/local/systemc-2.3.0/ -DNVDLA_HW_PREFIX=/odla/vpr/nv_small -DNVDLA_HW_PROJECT=nv_small
make
make install

Virtual Platform on AWS FPGA

TBD

FireSim

FireSim-NVDLA is a fork of the FireSim FPGA-accelerated full-system simulator integrated with NVIDIA Deep Learning Accelerator (NVDLA).

https://github.com/nvdla/firesim-nvdla is forked from https://github.com/CSL-KU/firesim-nvdla to run NVDLA native test application on FireSim platform.

Original FireSim+NVDLA integration is maintained by the Computer Systems Design Laboratory at the University of Kansas. FireSim-NVDLA runs on the Amazon FPGA cloud (EC2 F1 instance).

Setup

To work with FireSim-NVDLA, first, you need to learn how to use FireSim. It is recommended to follow the steps in the FireSim documentation (v1.6.0) to set up the simulator and run a single-node simulation. Please make sure that you are following the right version of the documentation. The only difference in setup is you use the URL of this repository when cloning in Setting up the FireSim Repo:

git clone https://github.com/nvdla/firesim-nvdla
cd firesim-nvdla
./build-setup.sh fast

After successfully running a single-node simulation, come back to this guide and follow the rest of instructions to run test application on FireSim platform.

Note: Make sure that you are using FPGA Developer AMI - 1.6.0. Version 1.5.0 no longer works due to the issues related to Python.

Configure FireSim for NVDLA

Configure FireSim to simulate the target which has the NVDLA model. For that, in firesim-nvdla/deploy/config_runtime.ini, change the parameter defaulthwconfig to firesim-quadcore-no-nic-nvdla-ddr3-llc4mb. Additionally, change workloadname to nvdla.json. Your final config_runtime.ini should look like this:

# RUNTIME configuration for the FireSim Simulation Manager
# See docs/Advanced-Usage/Manager/Manager-Configuration-Files.rst for documentation of all of these params.

[runfarm]
runfarmtag=mainrunfarm

f1_16xlarges=0
m4_16xlarges=0
f1_4xlarges=0
f1_2xlarges=1

runinstancemarket=ondemand
spotinterruptionbehavior=terminate
spotmaxprice=ondemand

[targetconfig]
topology=no_net_config
no_net_num_nodes=1
linklatency=6405
switchinglatency=10
netbandwidth=200
profileinterval=-1

# This references a section from config_hwconfigs.ini
# In homogeneous configurations, use this to set the hardware config deployed
# for all simulators
defaulthwconfig=firesim-quadcore-no-nic-nvdla-ddr3-llc4mb

[tracing]
enable=no
startcycle=0
endcycle=-1

[workload]
workloadname=nvdla.json
terminateoncompletion=no

Dependencies

System requirements for Virtual Platform

Install tools and libraries

sudo apt-get update
sudo apt-get install g++ cmake libboost-dev python-dev libglib2.0-dev libpixman-1-dev liblua5.2-dev swig libcap-dev libattr1-dev default-jdk

Steps required if using Ubuntu higher than 14.04

sudo apt-get install python-software-properties
sudo apt-get install software-properties-common
sudo add-apt-repository ppa:ubuntu-toolchain-r/test
sudo apt-get update
sudo apt-get install gcc-4.8
sudo apt-get install g++-4.8
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-4.8 50
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-4.8 50

Install SystemC 2.3.0 (Note: SystemC 2.3.1/2.3.2 not supported)

wget -O systemc-2.3.0a.tar.gz http://www.accellera.org/images/downloads/standards/systemc/systemc-2.3.0a.tar.gz 
tar -xzvf systemc-2.3.0a.tar.gz
cd systemc-2.3.0a
sudo mkdir -p /usr/local/systemc-2.3.0/
mkdir objdir
cd objdir
../configure --prefix=/usr/local/systemc-2.3.0
make
sudo make install

Install Perl package

wget -O YAML-1.24.tar.gz http://search.cpan.org/CPAN/authors/id/T/TI/TINITA/YAML-1.24.tar.gz 
tar -xzvf YAML-1.24.tar.gz 
cd YAML-1.24
perl Makefile.PL
make
sudo make install
wget -O IO-Tee-0.65.tar.gz http://search.cpan.org/CPAN/authors/id/N/NE/NEILB/IO-Tee-0.65.tar.gz 
tar -xzvf IO-Tee-0.65.tar.gz
cd IO-Tee-0.65
perl Makefile.PL
make
sudo make install
cpan -i Capture::Tiny [Note: Fix nvdla.org for it]
cpan -i XML::Simple [Note: Fix nvdla.org for it]

Buildroot

git clone https://github.com/nvdla/buildroot
make qemu_aarch64_virt_defconfig
make menuconfig
   * Target Options -> Target Architecture -> AArch64 (little endian)
	* Target Options -> Target Architecture Variant -> cortex-A57
	* Toolchain -> Custom kernel headers series -> 4.13.x
	* Toolchain -> Toolchain type -> External toolchain
	* Toolchain -> Toolchain -> Linaro AArch64 2017.08
	* Toolchain -> Toolchain origin -> Toolchain to be downloaded and installed
	* Toolchain -> Copy gdb server to the Target
	* Kernel -> () Kernel version -> 4.13.3
	* Kernel -> Kernel configuration -> Use the architecture default configuration
	* System configuration -> Enable root login with password -> Y
	* System configuration -> Root password -> nvdla
	* Target Packages -> Show packages that are also provided by busybox -> Y
	* Target Packages -> Networking applications -> openssh -> Y
	* Target Packages -> Debugging, profiling and benchmark -> gdb -> Y
   * Target Packages -> Debugging, profiling and benchmark -> full debugger -> Y
make -j4

Files to use from build

{buildroot-root}/output/images/Image
{buildroot-root}/output/images/rootfs.ext4
{buildroot-root}/output/build/linux-4.13.3/drivers/gpu/drm/drm.ko

Toolchain

Toolchain is downloaded at below location which can be used to build NVDLA kernel driver and NVDLA runtime for ARM64

{buildroot-root}/output/host/bin/aarch64-linux-gnu-

Linux kernel 4.13.3

Linux kernel 4.13.3 is downloaded at below location which can be used to build NVDLA kernel driver for ARM64

{buildroot-root}/output/build/linux-4.13.3

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published