Pytorch Implementation of FasterRCNN.
You can star this repository to keep track of the project if it's helpful for you, thank you for your support.
OS: Ubuntu 16.04
Python: python3.x with torch==1.2.0, torchvision==0.4.0
Backbone | Train | Test | Pretrained Model | Epochs | Learning Rate | RoI per image | AP |
---|---|---|---|---|---|---|---|
ResNet-18 | trainval35k | minival5k | Pytorch | 12 | 2e-2/2e-3/2e-4 | 512 | 27.1 |
ResNet-34 | trainval35k | minival5k | Pytorch | 12 | 2e-2/2e-3/2e-4 | 512 | 33.5 |
ResNet-50 | trainval35k | minival5k | Pytorch | 12 | 2e-2/2e-3/2e-4 | 512 | 34.9 |
ResNet-101 | trainval35k | minival5k | Pytorch | 12 | 2e-2/2e-3/2e-4 | 512 | 38.6 |
You could get the trained models reported above at
https://drive.google.com/open?id=1JYs4r1M6doRlMgKCxSWmue2iKAcMkJxe
cd libs
sh make.sh
usage: train.py [-h] --datasetname DATASETNAME --backbonename BACKBONENAME
[--checkpointspath CHECKPOINTSPATH]
optional arguments:
-h, --help show this help message and exit
--datasetname DATASETNAME
dataset for training.
--backbonename BACKBONENAME
backbone network for training.
--checkpointspath CHECKPOINTSPATH
checkpoints you want to use.
cmd example:
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python train.py --datasetname coco --backbonename resnet50
usage: test.py [-h] --datasetname DATASETNAME [--annfilepath ANNFILEPATH]
[--datasettype DATASETTYPE] --backbonename BACKBONENAME
--checkpointspath CHECKPOINTSPATH [--nmsthresh NMSTHRESH]
optional arguments:
-h, --help show this help message and exit
--datasetname DATASETNAME
dataset for testing.
--annfilepath ANNFILEPATH
used to specify annfilepath.
--datasettype DATASETTYPE
used to specify datasettype.
--backbonename BACKBONENAME
backbone network for testing.
--checkpointspath CHECKPOINTSPATH
checkpoints you want to use.
--nmsthresh NMSTHRESH
thresh used in nms.
cmd example:
CUDA_VISIBLE_DEVICES=0 python test.py --checkpointspath faster_res50_trainbackup_coco/epoch_12.pth --datasetname coco --backbonename resnet50
usage: demo.py [-h] --imagepath IMAGEPATH --backbonename BACKBONENAME
--datasetname DATASETNAME --checkpointspath CHECKPOINTSPATH
[--nmsthresh NMSTHRESH] [--confthresh CONFTHRESH]
optional arguments:
-h, --help show this help message and exit
--imagepath IMAGEPATH
image you want to detect.
--backbonename BACKBONENAME
backbone network for demo.
--datasetname DATASETNAME
dataset used to train.
--checkpointspath CHECKPOINTSPATH
checkpoints you want to use.
--nmsthresh NMSTHRESH
thresh used in nms.
--confthresh CONFTHRESH
thresh used in showing bounding box.
cmd example:
CUDA_VISIBLE_DEVICES=0 python demo.py --checkpointspath faster_res50_trainbackup_coco/epoch_12.pth --datasetname coco --backbonename resnet50 --imagepath 000001.jpg
[1]. https://github.com/jwyang/faster-rcnn.pytorch
[2]. https://github.com/open-mmlab/mmdetection