This is a repository for PyTorch training implementation of general purposed classifier. With the training code, various feature extractor backbones such as Resnet, Darknet, CSP-Darknet53, Mobilenet series can be created. It can provide 6x faster dataloader rather than torchvision.datasets.ImageFolder.
- 224 x 224 Model Performance Table
Model | Dataset | Train | Valid | Size (pixel) |
Accuracy (Top-1) |
Params (M) |
FLOPs (G) |
---|---|---|---|---|---|---|---|
Darknet19 | ImageNet | train2012 | val2012 | 224 | 73.50 | 20.84 | 5.62 |
Darknet53 | ImageNet | train2012 | val2012 | 224 | 77.67 | 41.61 | 14.29 |
Darknet53-tiny | ImageNet | train2012 | val2012 | 224 | 52.75 | 2.09 | 0.64 |
CSP-Darknet53 | ImageNet | train2012 | val2012 | 224 | 77.83 | 21.74 | 6.72 |
Mobilenet-v1 | ImageNet | train2012 | val2012 | 224 | 71.49 | 4.23 | 1.18 |
Mobilenet-v2 | ImageNet | train2012 | val2012 | 224 | 66.61 | 3.50 | 0.66 |
Mobilenet-v3-small | ImageNet | train2012 | val2012 | 224 | - | - | - |
Mobilenet-v3-large | ImageNet | train2012 | val2012 | 224 | 69.93 | 5.48 | 0.47 |
Pretrained Model Weights Download
- 448 x 448 Model Performance Table
Model | Dataset | Train | Valid | Size (pixel) |
Accuracy (Top-1) |
Params (M) |
FLOPs (G) |
---|---|---|---|---|---|---|---|
Darknet19 | ImageNet | train2012 | val2012 | 448 | 76.22 | 20.84 | 22.47 |
Darknet53 | ImageNet | train2012 | val2012 | 448 | 79.77 | 41.61 | 57.17 |
Darknet53-tiny | ImageNet | train2012 | val2012 | 448 | - | - | - |
CSP-Darknet53 | ImageNet | train2012 | val2012 | 448 | 79.33 | 21.74 | 26.86 |
Mobilenet-v1 | ImageNet | train2012 | val2012 | 448 | - | - | - |
Mobilenet-v2 | ImageNet | train2012 | val2012 | 448 | - | - | - |
Mobilenet-v3-small | ImageNet | train2012 | val2012 | 448 | - | - | - |
Mobilenet-v3-large | ImageNet | train2012 | val2012 | 448 | - | - | - |
Pretrained Model Weights Download
- You can train various classifier architectures (ResNet18, ResNet34, ResNet50, ResNet101, DarkNet19, DarkNet53, and CSP-DarkNet53, Mobilenetv1-v3). In addition, you can finetune classifier adding "--pretrained" in training command after putting the weight files into "./weights" directory with {model name}.
- In case of fine-tuning with 448px image, we finetune pretrained 224px model for 15~20 epochs without warming up learning rate. That is the comment like shown below.
python3 train.py --exp darknet19-448 --model darknet19 --batch-size 128 --base-lr 0.001 --warmup 0 --img-size 448 --num-epochs 15 --pretrained
python train.py --exp my_test --data imagenet.yaml --model resnet18
--model resnet34
--model resnet50
--model resnet101
--model darknet19
--model darknet53
--model darknet53-tiny
--model csp-darknet53 --width_multiple 1.0 --depth_multiple 1.0
--model mobilenet-v1 --width_multiple 1.0
--model mobilenet-v2 --width_multiple 1.0
--model mobilenet-v3 --mode {large, small} --width_multiple 1.0
- It computes Top-1 accuracy. Top-1 accuracy is the conventional accuracy, the model answer (the one with highest probability) must be exactly the expected answer.
python val.py --exp my_test --data voc.yaml --ckpt-name best.pt
- Author: Jiho Park
- Email: [email protected]