Skip to content

PyTorch implementation of Superpixel Sampling Networks

License

Notifications You must be signed in to change notification settings

perrying/ssn-pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Superpixel Sampling Networks

PyTorch implementation of Superpixel Sampling Networks
paper: https://arxiv.org/abs/1807.10174
original code: https://github.com/NVlabs/ssn_superpixels

Note

A pure PyTorch implementation of the core component, differentiable SLIC, is available here (note that it implements the similarity function as the cosine similarity instead of the negative Euclidean distance).

Requirements

  • PyTorch >= 1.4
  • scikit-image
  • matplotlib

Usage

inference

SSN_pix

python inference --image /path/to/image

SSN_deep

python inference --image /path/to/image --weight /path/to/pretrained_weight

training

python train.py --root /path/to/BSDS500

Results

SSN_pix

SSN_deep

About

PyTorch implementation of Superpixel Sampling Networks

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages