A comprehensive DevOps toolkit for AWS cloud environments, providing automated system monitoring, log analysis, backup management, and security compliance verification capabilities. Built with Python, this project demonstrates modern DevOps practices and cloud automation skills.
-
✅ System Health Monitoring
- Created SystemMonitor class with Prometheus integration
- Real-time CPU, memory, and disk metrics
- Complete test coverage with integration tests
-
✅ Log Analysis System
- Implemented log collection and analysis
- Pattern recognition with custom patterns
- Alert generation system
- Log rotation with retention policies
-
✅ S3 Backup Management
- AWS S3 integration for backups
- Backup verification system
- Restoration capabilities
- Metadata tracking
- 🚧 Backup Scheduling System
- 🚧 Security Compliance Features
- 🚧 CI/CD Pipeline Setup
- 🚧 Docker Containerization
- 🚧 Kubernetes Deployment Configuration
-
🔍 System Health Monitoring
- Real-time CPU, memory, and disk metrics
- Process monitoring and analysis
- Prometheus metrics integration
-
📊 Log Analysis
- Automated log collection and rotation
- Pattern recognition and alerts
- Retention management
-
💾 Backup Automation
- AWS S3 integration
- Backup verification
- Restoration testing
-
🔒 Security Compliance
- Security status monitoring
- Compliance verification
- Configuration auditing
- Python 3.11+
- AWS SDK (boto3)
- Prometheus Client
- Docker
- pytest for testing
- Black for formatting
- pylint for code quality
- Python 3.11 or higher
- Git
- AWS account (for cloud features)
- Clone the repository
git clone https://github.com/paulcyi/cloudops-automation-toolkit.git
cd cloudops-automation-toolkit
- Create and activate virtual environment
python3 -m venv venv
source venv/bin/activate # On Unix/MacOS
# or
.\venv\Scripts\activate # On Windows
- Install required packages
python3 -m pip install pytest psutil
# or for all dependencies:
python3 -m pip install -r requirements.txt
- Activate the virtual environment:
source venv/bin/activate # On Unix/MacOS
# or
.\venv\Scripts\activate # On Windows
- Work on your feature branch:
git checkout -b feature/your-feature-name
- Run tests:
pytest tests/ -v
-
Before committing:
- Run all tests
- Update documentation if needed
- Follow commit message convention: type(scope): description
-
When finished, deactivate the virtual environment:
deactivate
- Main branch: Production-ready code
- Develop branch: Integration branch
- Feature branches: Format
feature/component-name
- Commits: Use conventional commits format
Example commit:
feat(monitoring): implement system metrics collection
- Add CPU, memory, and disk metrics
- Configure Prometheus integration
- Add unit tests
- Write tests for all new features
- Maintain >80% test coverage
- Run full test suite before commits
- Follow PEP 8 guidelines
- Use type hints
- Document all functions and classes
- Use Black for formatting
- Use pylint for code quality
# Format code
black .
# Check code quality
pylint src/
cloudops-automation-toolkit/
├── src/
│ ├── monitors/
│ │ └── system_monitor.py
│ ├── logs/
│ │ ├── log_analyzer.py
│ │ ├── log_reader.py
│ │ └── log_rotator.py
│ └── backup/
│ └── s3_backup.py
├── tests/
│ ├── monitors/
│ │ └── test_system_monitor.py
│ ├── logs/
│ │ ├── test_log_reader.py
│ │ └── test_log_rotator.py
│ └── backup/
│ └── test_s3_backup.py
├── docs/
├── pytest.ini
├── requirements.txt
└── README.md
- Implement backup scheduling system
- Add security compliance features
- Set up GitHub Actions for CI/CD
- Add Docker containerization
- Create Kubernetes deployment manifests
[Coming Soon]
[Coming Soon]
Paul Yi
This project is part of my DevOps learning journey and portfolio development.