Skip to content

panxin801/m5_accuracy

Repository files navigation

Kaggle: M5_Forecasting_Accuracy

Author: Xin Pan

Date: 2020.06.12


比赛概况

使用沃尔玛的销售数据,来预测接下来28天的日销售金额以及不确定性的估计。这些数据涵盖了美国三个州(加利福尼亚州、德克萨斯州和威斯康星州)的门店,包括商品级别(level)、部门、产品类别和门店详细信息。此外,它还具有解释变量,如价格、促销(promotions)、星期几和特殊事件。

m5数据分析

注释

  1. (E)表示这列在处理的时候使用LabelEncoder重新打标签

calendar.csv

数据一共1969天。包含如下的这些列:

date wm_yr_wk weekday wday month year d
日期(比如2020-6-17) 一年52州(11101-11621) 周几(monday--sunday) 周几(1-7) 1-12 2011这样的数字 d_1-d_1969(2011-1-29开始),一直累加
event_name_1(E) event_type_1(E) event_name_2(E) event_type_2(E) snap_CA snap_TX snap_WI
节日名字(没有为空) 节日类型(没有为空) 节日名字(没有为空) 节日类型(没有为空) 0/1(可以/不可以) 0/1(可以/不可以) 0/1(可以/不可以)

两组特殊节日名称和节日的种类,以及snap_XXX其中的XXX代表CA,TX,WI。是说这三个地点的商店是否允许购买带有snap标签的商品。

sales_train_evaluation.csv

保存了历史每天每个产品的每天的销售数据从[d_1,d_1941]。也就是[d_1942,d_1969]一共28天是要预测的。id是30490个,item_id是3049个。包含如下这些列:

id item_id(E) dept_id(E) cat_id(E) store_id(E) state_id(E)
由很多字段组成(item_id+store_id+partion) 商品id 7种 3种,Food最多,其次是Household,最少的是Hobbies 10种 3个
d_1 d_2 ...... d_d_1941
销售量,整形,没有卖就是0 销售量,整形,没有卖就是0 ...... 销售量,整形,没有卖就是0

Instead of having a single competition to estimate both the point forecasts and the uncertainty distribution, there will be two parallel tracks using the same dataset, the first requiring 28 days ahead point forecasts and the second 28 days ahead probabilistic forecasts for the median and four prediction intervals (50%, 67%, 95%, and 99%).

item_idid之间存在一个10倍的关系,因为什么呢,CA有4个仓库,TX有3个仓库,WI(威斯康星州)有3个仓库。这个数据表的一行,表示一个商品在一个store的1941天的销售情况。

sales_train_validation.csv

和上边文件差不多,但是日期范围是[d_1,d_1913]。id是30490个,item_id是3049个。

image-20200609002214351

sample_submission.csv

预测60980个id在28天的销售情况。包含如下这些列:

id F1 ....... F28
包括evaluation和validation结尾的id一共和30490*2个

sell_prices.csv

每个商店里每个商品的每周的销售价格。包含如下这些列:

store_id(E) item_id(E) wm_yr_wk sell_price
sales_train_*.csv里边相同的列 sales_train_*.csv里边相同的列 calendar.csv中的这个列 销售价格,float

6841121行。

TODO:

  1. 这里还需要明白到底预测的是什么?

    A: 30490个商品在28天的销售情况。

  2. 训练的3个fold,每个差了28天。这个是一个trick我认为,那么我是否可可以在多增加几个这样的fold?

Reference

  1. kaggle M5 homepage

  2. m5数据介绍