Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

CLN: Remove deprecations of groupby.fillna in tests #60565

Merged
merged 1 commit into from
Dec 14, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions pandas/tests/groupby/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@ def get_groupby_method_args(name, obj):
"""
Get required arguments for a groupby method.

When parametrizing a test over groupby methods (e.g. "sum", "mean", "fillna"),
When parametrizing a test over groupby methods (e.g. "sum", "mean"),
it is often the case that arguments are required for certain methods.

Parameters
Expand All @@ -16,7 +16,7 @@ def get_groupby_method_args(name, obj):
-------
A tuple of required arguments for the method.
"""
if name in ("nth", "fillna", "take"):
if name in ("nth", "take"):
return (0,)
if name == "quantile":
return (0.5,)
Expand Down
5 changes: 1 addition & 4 deletions pandas/tests/groupby/test_categorical.py
Original file line number Diff line number Diff line change
Expand Up @@ -1963,10 +1963,7 @@ def test_category_order_transformer(
df = df.set_index(keys)
args = get_groupby_method_args(transformation_func, df)
gb = df.groupby(keys, as_index=as_index, sort=sort, observed=observed)
warn = FutureWarning if transformation_func == "fillna" else None
msg = "DataFrameGroupBy.fillna is deprecated"
with tm.assert_produces_warning(warn, match=msg):
op_result = getattr(gb, transformation_func)(*args)
op_result = getattr(gb, transformation_func)(*args)
result = op_result.index.get_level_values("a").categories
expected = Index([1, 4, 3, 2])
tm.assert_index_equal(result, expected)
Expand Down
30 changes: 4 additions & 26 deletions pandas/tests/groupby/test_groupby.py
Original file line number Diff line number Diff line change
Expand Up @@ -2098,36 +2098,14 @@ def test_group_on_empty_multiindex(transformation_func, request):
df["col_3"] = df["col_3"].astype(int)
df["col_4"] = df["col_4"].astype(int)
df = df.set_index(["col_1", "col_2"])
if transformation_func == "fillna":
args = ("ffill",)
else:
args = ()
warn = FutureWarning if transformation_func == "fillna" else None
warn_msg = "DataFrameGroupBy.fillna is deprecated"
with tm.assert_produces_warning(warn, match=warn_msg):
result = df.iloc[:0].groupby(["col_1"]).transform(transformation_func, *args)
with tm.assert_produces_warning(warn, match=warn_msg):
expected = df.groupby(["col_1"]).transform(transformation_func, *args).iloc[:0]
result = df.iloc[:0].groupby(["col_1"]).transform(transformation_func)
expected = df.groupby(["col_1"]).transform(transformation_func).iloc[:0]
if transformation_func in ("diff", "shift"):
expected = expected.astype(int)
tm.assert_equal(result, expected)

warn_msg = "SeriesGroupBy.fillna is deprecated"
with tm.assert_produces_warning(warn, match=warn_msg):
result = (
df["col_3"]
.iloc[:0]
.groupby(["col_1"])
.transform(transformation_func, *args)
)
warn_msg = "SeriesGroupBy.fillna is deprecated"
with tm.assert_produces_warning(warn, match=warn_msg):
expected = (
df["col_3"]
.groupby(["col_1"])
.transform(transformation_func, *args)
.iloc[:0]
)
result = df["col_3"].iloc[:0].groupby(["col_1"]).transform(transformation_func)
expected = df["col_3"].groupby(["col_1"]).transform(transformation_func).iloc[:0]
if transformation_func in ("diff", "shift"):
expected = expected.astype(int)
tm.assert_equal(result, expected)
Expand Down
8 changes: 4 additions & 4 deletions pandas/tests/groupby/test_groupby_subclass.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,11 +36,11 @@ def test_groupby_preserves_subclass(obj, groupby_func):

args = get_groupby_method_args(groupby_func, obj)

warn = FutureWarning if groupby_func == "fillna" else None
msg = f"{type(grouped).__name__}.fillna is deprecated"
with tm.assert_produces_warning(warn, match=msg, raise_on_extra_warnings=False):
warn = FutureWarning if groupby_func == "corrwith" else None
msg = f"{type(grouped).__name__}.corrwith is deprecated"
with tm.assert_produces_warning(warn, match=msg):
result1 = getattr(grouped, groupby_func)(*args)
with tm.assert_produces_warning(warn, match=msg, raise_on_extra_warnings=False):
with tm.assert_produces_warning(warn, match=msg):
result2 = grouped.agg(groupby_func, *args)

# Reduction or transformation kernels should preserve type
Expand Down
7 changes: 2 additions & 5 deletions pandas/tests/groupby/test_numeric_only.py
Original file line number Diff line number Diff line change
Expand Up @@ -278,14 +278,11 @@ def test_numeric_only(kernel, has_arg, numeric_only, keys):
kernel in ("first", "last")
or (
# kernels that work on any dtype and don't have numeric_only arg
kernel in ("any", "all", "bfill", "ffill", "fillna", "nth", "nunique")
kernel in ("any", "all", "bfill", "ffill", "nth", "nunique")
and numeric_only is lib.no_default
)
):
warn = FutureWarning if kernel == "fillna" else None
msg = "DataFrameGroupBy.fillna is deprecated"
with tm.assert_produces_warning(warn, match=msg):
result = method(*args, **kwargs)
result = method(*args, **kwargs)
assert "b" in result.columns
elif has_arg:
assert numeric_only is not True
Expand Down
24 changes: 4 additions & 20 deletions pandas/tests/groupby/test_raises.py
Original file line number Diff line number Diff line change
Expand Up @@ -144,7 +144,6 @@ def test_groupby_raises_string(
),
"diff": (TypeError, "unsupported operand type"),
"ffill": (None, ""),
"fillna": (None, ""),
"first": (None, ""),
"idxmax": (None, ""),
"idxmin": (None, ""),
Expand Down Expand Up @@ -211,10 +210,7 @@ def test_groupby_raises_string(
elif groupby_func == "corrwith":
msg = "Cannot perform reduction 'mean' with string dtype"

if groupby_func == "fillna":
kind = "Series" if groupby_series else "DataFrame"
warn_msg = f"{kind}GroupBy.fillna is deprecated"
elif groupby_func == "corrwith":
if groupby_func == "corrwith":
warn_msg = "DataFrameGroupBy.corrwith is deprecated"
else:
warn_msg = ""
Expand Down Expand Up @@ -301,7 +297,6 @@ def test_groupby_raises_datetime(
"cumsum": (TypeError, "datetime64 type does not support operation 'cumsum'"),
"diff": (None, ""),
"ffill": (None, ""),
"fillna": (None, ""),
"first": (None, ""),
"idxmax": (None, ""),
"idxmin": (None, ""),
Expand Down Expand Up @@ -333,10 +328,7 @@ def test_groupby_raises_datetime(
"var": (TypeError, "datetime64 type does not support operation 'var'"),
}[groupby_func]

if groupby_func == "fillna":
kind = "Series" if groupby_series else "DataFrame"
warn_msg = f"{kind}GroupBy.fillna is deprecated"
elif groupby_func == "corrwith":
if groupby_func == "corrwith":
warn_msg = "DataFrameGroupBy.corrwith is deprecated"
else:
warn_msg = ""
Expand Down Expand Up @@ -457,7 +449,6 @@ def test_groupby_raises_category(
r"unsupported operand type\(s\) for -: 'Categorical' and 'Categorical'",
),
"ffill": (None, ""),
"fillna": (None, ""), # no-op with CoW
"first": (None, ""),
"idxmax": (None, ""),
"idxmin": (None, ""),
Expand Down Expand Up @@ -532,10 +523,7 @@ def test_groupby_raises_category(
),
}[groupby_func]

if groupby_func == "fillna":
kind = "Series" if groupby_series else "DataFrame"
warn_msg = f"{kind}GroupBy.fillna is deprecated"
elif groupby_func == "corrwith":
if groupby_func == "corrwith":
warn_msg = "DataFrameGroupBy.corrwith is deprecated"
else:
warn_msg = ""
Expand Down Expand Up @@ -650,7 +638,6 @@ def test_groupby_raises_category_on_category(
),
"diff": (TypeError, "unsupported operand type"),
"ffill": (None, ""),
"fillna": (None, ""), # no-op with CoW
"first": (None, ""),
"idxmax": (ValueError, "empty group due to unobserved categories")
if empty_groups
Expand Down Expand Up @@ -710,10 +697,7 @@ def test_groupby_raises_category_on_category(
),
}[groupby_func]

if groupby_func == "fillna":
kind = "Series" if groupby_series else "DataFrame"
warn_msg = f"{kind}GroupBy.fillna is deprecated"
elif groupby_func == "corrwith":
if groupby_func == "corrwith":
warn_msg = "DataFrameGroupBy.corrwith is deprecated"
else:
warn_msg = ""
Expand Down
9 changes: 1 addition & 8 deletions pandas/tests/groupby/transform/test_transform.py
Original file line number Diff line number Diff line change
Expand Up @@ -329,9 +329,6 @@ def test_transform_transformation_func(transformation_func):
if transformation_func == "cumcount":
test_op = lambda x: x.transform("cumcount")
mock_op = lambda x: Series(range(len(x)), x.index)
elif transformation_func == "fillna":
test_op = lambda x: x.transform("fillna", value=0)
mock_op = lambda x: x.fillna(value=0)
elif transformation_func == "ngroup":
test_op = lambda x: x.transform("ngroup")
counter = -1
Expand Down Expand Up @@ -1436,11 +1433,7 @@ def test_null_group_str_transformer_series(dropna, transformation_func):
dtype = object if transformation_func in ("any", "all") else None
buffer.append(Series([np.nan], index=[3], dtype=dtype))
expected = concat(buffer)

warn = FutureWarning if transformation_func == "fillna" else None
msg = "SeriesGroupBy.fillna is deprecated"
with tm.assert_produces_warning(warn, match=msg):
result = gb.transform(transformation_func, *args)
result = gb.transform(transformation_func, *args)

tm.assert_equal(result, expected)

Expand Down
Loading