Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

TST: dt64 unit in tests #56126

Merged
merged 1 commit into from
Nov 23, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion pandas/core/tools/datetimes.py
Original file line number Diff line number Diff line change
Expand Up @@ -495,7 +495,8 @@ def _convert_listlike_datetimes(
if tz_parsed is not None:
# We can take a shortcut since the datetime64 numpy array
# is in UTC
dtype = cast(DatetimeTZDtype, tz_to_dtype(tz_parsed))
out_unit = np.datetime_data(result.dtype)[0]
dtype = cast(DatetimeTZDtype, tz_to_dtype(tz_parsed, out_unit))
dt64_values = result.view(f"M8[{dtype.unit}]")
dta = DatetimeArray._simple_new(dt64_values, dtype=dtype)
return DatetimeIndex._simple_new(dta, name=name)
Expand Down
2 changes: 1 addition & 1 deletion pandas/tests/arithmetic/test_timedelta64.py
Original file line number Diff line number Diff line change
Expand Up @@ -1039,7 +1039,7 @@ def test_td64arr_add_datetime64_nat(self, box_with_array):
other = np.datetime64("NaT")

tdi = timedelta_range("1 day", periods=3)
expected = DatetimeIndex(["NaT", "NaT", "NaT"])
expected = DatetimeIndex(["NaT", "NaT", "NaT"], dtype="M8[ns]")

tdser = tm.box_expected(tdi, box_with_array)
expected = tm.box_expected(expected, box_with_array)
Expand Down
3 changes: 2 additions & 1 deletion pandas/tests/dtypes/test_dtypes.py
Original file line number Diff line number Diff line change
Expand Up @@ -200,7 +200,8 @@ def test_is_boolean(self, categories, expected):

def test_dtype_specific_categorical_dtype(self):
expected = "datetime64[ns]"
result = str(Categorical(DatetimeIndex([])).categories.dtype)
dti = DatetimeIndex([], dtype=expected)
result = str(Categorical(dti).categories.dtype)
assert result == expected

def test_not_string(self):
Expand Down
3 changes: 2 additions & 1 deletion pandas/tests/frame/methods/test_transpose.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,8 @@ def test_transpose_td64_intervals(self):

def test_transpose_empty_preserves_datetimeindex(self):
# GH#41382
df = DataFrame(index=DatetimeIndex([]))
dti = DatetimeIndex([], dtype="M8[ns]")
df = DataFrame(index=dti)

expected = DatetimeIndex([], dtype="datetime64[ns]", freq=None)

Expand Down
5 changes: 3 additions & 2 deletions pandas/tests/indexes/datetimes/test_date_range.py
Original file line number Diff line number Diff line change
Expand Up @@ -183,6 +183,7 @@ def test_date_range_edges(self, freq):
)
exp = DatetimeIndex(
[ts + n * td for n in range(1, 5)],
dtype="M8[ns]",
freq=freq,
)
tm.assert_index_equal(idx, exp)
Expand All @@ -193,7 +194,7 @@ def test_date_range_edges(self, freq):
end=ts + td,
freq=freq,
)
exp = DatetimeIndex([], freq=freq)
exp = DatetimeIndex([], dtype="M8[ns]", freq=freq)
tm.assert_index_equal(idx, exp)

# start matches end
Expand All @@ -202,7 +203,7 @@ def test_date_range_edges(self, freq):
end=ts + td,
freq=freq,
)
exp = DatetimeIndex([ts + td], freq=freq)
exp = DatetimeIndex([ts + td], dtype="M8[ns]", freq=freq)
tm.assert_index_equal(idx, exp)

def test_date_range_near_implementation_bound(self):
Expand Down
2 changes: 1 addition & 1 deletion pandas/tests/indexes/datetimes/test_scalar_compat.py
Original file line number Diff line number Diff line change
Expand Up @@ -304,7 +304,7 @@ def test_dti_fields(self, tz):
exp = dti[[0, 90, 181, 273]]
tm.assert_index_equal(res, exp)
res = dti[dti.is_leap_year]
exp = DatetimeIndex([], freq="D", tz=dti.tz, name="name")
exp = DatetimeIndex([], freq="D", tz=dti.tz, name="name").as_unit("ns")
tm.assert_index_equal(res, exp)

def test_dti_is_year_quarter_start(self):
Expand Down
8 changes: 4 additions & 4 deletions pandas/tests/indexes/datetimes/test_setops.py
Original file line number Diff line number Diff line change
Expand Up @@ -73,7 +73,7 @@ def test_union(self, tz, sort):
expected2_notsorted = DatetimeIndex(list(other2) + list(rng2[:3]))

rng3 = date_range("1/1/2000", freq="D", periods=5, tz=tz)
other3 = DatetimeIndex([], tz=tz)
other3 = DatetimeIndex([], tz=tz).as_unit("ns")
expected3 = date_range("1/1/2000", freq="D", periods=5, tz=tz)
expected3_notsorted = rng3

Expand Down Expand Up @@ -235,7 +235,7 @@ def test_intersection(self, tz, sort):
expected3 = date_range("6/1/2000", "6/20/2000", freq="D", name=None)

rng4 = date_range("7/1/2000", "7/31/2000", freq="D", name="idx")
expected4 = DatetimeIndex([], freq="D", name="idx")
expected4 = DatetimeIndex([], freq="D", name="idx", dtype="M8[ns]")

for rng, expected in [
(rng2, expected2),
Expand Down Expand Up @@ -265,7 +265,7 @@ def test_intersection(self, tz, sort):

# GH 7880
rng4 = date_range("7/1/2000", "7/31/2000", freq="D", tz=tz, name="idx")
expected4 = DatetimeIndex([], tz=tz, name="idx")
expected4 = DatetimeIndex([], tz=tz, name="idx").as_unit("ns")
assert expected4.freq is None

for rng, expected in [
Expand Down Expand Up @@ -536,7 +536,7 @@ def test_intersection(self):

# non-overlapping
the_int = rng[:10].intersection(rng[10:])
expected = DatetimeIndex([])
expected = DatetimeIndex([]).as_unit("ns")
tm.assert_index_equal(the_int, expected)

def test_intersection_bug(self):
Expand Down
2 changes: 1 addition & 1 deletion pandas/tests/indexes/interval/test_interval.py
Original file line number Diff line number Diff line change
Expand Up @@ -388,7 +388,7 @@ def test_maybe_convert_i8_nat(self, breaks):
# GH 20636
index = IntervalIndex.from_breaks(breaks)

to_convert = breaks._constructor([pd.NaT] * 3)
to_convert = breaks._constructor([pd.NaT] * 3).as_unit("ns")
expected = Index([np.nan] * 3, dtype=np.float64)
result = index._maybe_convert_i8(to_convert)
tm.assert_index_equal(result, expected)
Expand Down
2 changes: 1 addition & 1 deletion pandas/tests/indexes/period/test_partial_slicing.py
Original file line number Diff line number Diff line change
Expand Up @@ -117,7 +117,7 @@ def test_range_slice_outofbounds(self, make_range):
idx = make_range(start="2013/10/01", freq="D", periods=10)

df = DataFrame({"units": [100 + i for i in range(10)]}, index=idx)
empty = DataFrame(index=type(idx)([], freq="D"), columns=["units"])
empty = DataFrame(index=idx[:0], columns=["units"])
empty["units"] = empty["units"].astype("int64")

tm.assert_frame_equal(df["2013/09/01":"2013/09/30"], empty)
Expand Down
12 changes: 7 additions & 5 deletions pandas/tests/io/formats/test_format.py
Original file line number Diff line number Diff line change
Expand Up @@ -872,20 +872,22 @@ def test_to_string_truncate_multilevel(self):
with option_context("display.max_rows", 7, "display.max_columns", 7):
assert has_doubly_truncated_repr(df)

def test_truncate_with_different_dtypes(self):
@pytest.mark.parametrize("dtype", ["object", "datetime64[us]"])
def test_truncate_with_different_dtypes(self, dtype):
# 11594, 12045
# when truncated the dtypes of the splits can differ

# 11594
s = Series(
ser = Series(
[datetime(2012, 1, 1)] * 10
+ [datetime(1012, 1, 2)]
+ [datetime(2012, 1, 3)] * 10
+ [datetime(2012, 1, 3)] * 10,
dtype=dtype,
)

with option_context("display.max_rows", 8):
result = str(s)
assert "object" in result
result = str(ser)
assert dtype in result

def test_truncate_with_different_dtypes2(self):
# 12045
Expand Down
21 changes: 7 additions & 14 deletions pandas/tests/io/parser/test_parse_dates.py
Original file line number Diff line number Diff line change
Expand Up @@ -831,9 +831,7 @@ def test_parse_dates_string(all_parsers):
parser = all_parsers
result = parser.read_csv(StringIO(data), index_col="date", parse_dates=["date"])
# freq doesn't round-trip
index = DatetimeIndex(
list(date_range("1/1/2009", periods=3)), name="date", freq=None
)
index = date_range("1/1/2009", periods=3, name="date")._with_freq(None)

expected = DataFrame(
{"A": ["a", "b", "c"], "B": [1, 3, 4], "C": [2, 4, 5]}, index=index
Expand Down Expand Up @@ -1736,17 +1734,12 @@ def test_parse_timezone(all_parsers):
2018-01-04 09:05:00+09:00,23400"""
result = parser.read_csv(StringIO(data), parse_dates=["dt"])

dti = DatetimeIndex(
list(
date_range(
start="2018-01-04 09:01:00",
end="2018-01-04 09:05:00",
freq="1min",
tz=timezone(timedelta(minutes=540)),
)
),
freq=None,
)
dti = date_range(
start="2018-01-04 09:01:00",
end="2018-01-04 09:05:00",
freq="1min",
tz=timezone(timedelta(minutes=540)),
)._with_freq(None)
expected_data = {"dt": dti, "val": [23350, 23400, 23400, 23400, 23400]}

expected = DataFrame(expected_data)
Expand Down
8 changes: 3 additions & 5 deletions pandas/tests/resample/test_period_index.py
Original file line number Diff line number Diff line change
Expand Up @@ -504,8 +504,8 @@ def test_resample_weekly_all_na(self):
expected = ts.asfreq("W-THU").ffill()
tm.assert_series_equal(result, expected)

def test_resample_tz_localized(self):
dr = date_range(start="2012-4-13", end="2012-5-1")
def test_resample_tz_localized(self, unit):
dr = date_range(start="2012-4-13", end="2012-5-1", unit=unit)
ts = Series(range(len(dr)), index=dr)

ts_utc = ts.tz_localize("UTC")
Expand All @@ -514,9 +514,7 @@ def test_resample_tz_localized(self):
result = ts_local.resample("W").mean()

ts_local_naive = ts_local.copy()
ts_local_naive.index = [
x.replace(tzinfo=None) for x in ts_local_naive.index.to_pydatetime()
]
ts_local_naive.index = ts_local_naive.index.tz_localize(None)

exp = ts_local_naive.resample("W").mean().tz_localize("America/Los_Angeles")
exp.index = pd.DatetimeIndex(exp.index, freq="W")
Expand Down
83 changes: 34 additions & 49 deletions pandas/tests/resample/test_resampler_grouper.py
Original file line number Diff line number Diff line change
Expand Up @@ -349,18 +349,19 @@ def weighted_quantile(series, weights, q):
tm.assert_series_equal(result, expected)


def test_resample_groupby_with_label():
def test_resample_groupby_with_label(unit):
# GH 13235
index = date_range("2000-01-01", freq="2D", periods=5)
index = date_range("2000-01-01", freq="2D", periods=5, unit=unit)
df = DataFrame(index=index, data={"col0": [0, 0, 1, 1, 2], "col1": [1, 1, 1, 1, 1]})
msg = "DataFrameGroupBy.resample operated on the grouping columns"
with tm.assert_produces_warning(FutureWarning, match=msg):
result = df.groupby("col0").resample("1W", label="left").sum()

mi = [
np.array([0, 0, 1, 2], dtype=np.int64),
pd.to_datetime(
np.array(["1999-12-26", "2000-01-02", "2000-01-02", "2000-01-02"])
np.array(
["1999-12-26", "2000-01-02", "2000-01-02", "2000-01-02"],
dtype=f"M8[{unit}]",
),
]
mindex = pd.MultiIndex.from_arrays(mi, names=["col0", None])
Expand Down Expand Up @@ -505,7 +506,9 @@ def test_resample_groupby_agg_object_dtype_all_nan(consolidate):
idx = pd.MultiIndex.from_arrays(
[
["A"] * 3 + ["B"] * 3,
pd.to_datetime(["2020-01-05", "2020-01-12", "2020-01-19"] * 2),
pd.to_datetime(["2020-01-05", "2020-01-12", "2020-01-19"] * 2).as_unit(
"ns"
),
],
names=["key", "date"],
)
Expand All @@ -530,19 +533,15 @@ def test_groupby_resample_with_list_of_keys():
}
)
result = df.groupby("group").resample("2D", on="date")[["val"]].mean()

mi_exp = pd.MultiIndex.from_arrays(
[[0, 0, 1, 1], df["date"]._values[::2]], names=["group", "date"]
)
expected = DataFrame(
data={
"val": [4.0, 3.5, 6.5, 3.0],
},
index=Index(
data=[
(0, Timestamp("2016-01-01")),
(0, Timestamp("2016-01-03")),
(1, Timestamp("2016-01-05")),
(1, Timestamp("2016-01-07")),
],
name=("group", "date"),
),
index=mi_exp,
)
tm.assert_frame_equal(result, expected)

Expand Down Expand Up @@ -605,17 +604,17 @@ def test_groupby_resample_size_all_index_same():
msg = "DataFrameGroupBy.resample operated on the grouping columns"
with tm.assert_produces_warning(FutureWarning, match=msg):
result = df.groupby("A").resample("D").size()

mi_exp = pd.MultiIndex.from_arrays(
[
[1, 1, 2, 2],
pd.DatetimeIndex(["2000-12-31", "2001-01-01"] * 2, dtype="M8[ns]"),
],
names=["A", None],
)
expected = Series(
3,
index=pd.MultiIndex.from_tuples(
[
(1, Timestamp("2000-12-31")),
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Generally +1 to refactor tests to minimize inference happening in our testing unless that's specifically what's tested

(1, Timestamp("2001-01-01")),
(2, Timestamp("2000-12-31")),
(2, Timestamp("2001-01-01")),
],
names=["A", None],
),
index=mi_exp,
)
tm.assert_series_equal(result, expected)

Expand All @@ -627,25 +626,18 @@ def test_groupby_resample_on_index_with_list_of_keys():
"group": [0, 0, 0, 0, 1, 1, 1, 1],
"val": [3, 1, 4, 1, 5, 9, 2, 6],
},
index=Series(
date_range(start="2016-01-01", periods=8),
name="date",
),
index=date_range(start="2016-01-01", periods=8, name="date"),
)
result = df.groupby("group").resample("2D")[["val"]].mean()

mi_exp = pd.MultiIndex.from_arrays(
[[0, 0, 1, 1], df.index[::2]], names=["group", "date"]
)
expected = DataFrame(
data={
"val": [2.0, 2.5, 7.0, 4.0],
},
index=Index(
data=[
(0, Timestamp("2016-01-01")),
(0, Timestamp("2016-01-03")),
(1, Timestamp("2016-01-05")),
(1, Timestamp("2016-01-07")),
],
name=("group", "date"),
),
index=mi_exp,
)
tm.assert_frame_equal(result, expected)

Expand All @@ -659,26 +651,19 @@ def test_groupby_resample_on_index_with_list_of_keys_multi_columns():
"second_val": [2, 7, 1, 8, 2, 8, 1, 8],
"third_val": [1, 4, 1, 4, 2, 1, 3, 5],
},
index=Series(
date_range(start="2016-01-01", periods=8),
name="date",
),
index=date_range(start="2016-01-01", periods=8, name="date"),
)
result = df.groupby("group").resample("2D")[["first_val", "second_val"]].mean()

mi_exp = pd.MultiIndex.from_arrays(
[[0, 0, 1, 1], df.index[::2]], names=["group", "date"]
)
expected = DataFrame(
data={
"first_val": [2.0, 2.5, 7.0, 4.0],
"second_val": [4.5, 4.5, 5.0, 4.5],
},
index=Index(
data=[
(0, Timestamp("2016-01-01")),
(0, Timestamp("2016-01-03")),
(1, Timestamp("2016-01-05")),
(1, Timestamp("2016-01-07")),
],
name=("group", "date"),
),
index=mi_exp,
)
tm.assert_frame_equal(result, expected)

Expand Down
Loading
Loading