Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adjust tests in dtypes folder for arrow string option #56125

Merged
merged 1 commit into from
Nov 26, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion pandas/tests/computation/test_eval.py
Original file line number Diff line number Diff line change
Expand Up @@ -1832,7 +1832,7 @@ def test_bool_ops_fails_on_scalars(lhs, cmp, rhs, engine, parser):
],
)
def test_equals_various(other):
df = DataFrame({"A": ["a", "b", "c"]})
df = DataFrame({"A": ["a", "b", "c"]}, dtype=object)
result = df.eval(f"A == {other}")
expected = Series([False, False, False], name="A")
if USE_NUMEXPR:
Expand Down
10 changes: 8 additions & 2 deletions pandas/tests/dtypes/cast/test_construct_ndarray.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
import numpy as np
import pytest

import pandas as pd
import pandas._testing as tm
from pandas.core.construction import sanitize_array

Expand All @@ -15,9 +16,14 @@
([1, 2, None], np.dtype("str"), np.array(["1", "2", None])),
],
)
def test_construct_1d_ndarray_preserving_na(values, dtype, expected):
def test_construct_1d_ndarray_preserving_na(
values, dtype, expected, using_infer_string
):
result = sanitize_array(values, index=None, dtype=dtype)
tm.assert_numpy_array_equal(result, expected)
if using_infer_string and expected.dtype == object and dtype is None:
tm.assert_extension_array_equal(result, pd.array(expected))
else:
tm.assert_numpy_array_equal(result, expected)


@pytest.mark.parametrize("dtype", ["m8[ns]", "M8[ns]"])
Expand Down
12 changes: 10 additions & 2 deletions pandas/tests/dtypes/cast/test_infer_dtype.py
Original file line number Diff line number Diff line change
Expand Up @@ -159,8 +159,10 @@ def test_infer_dtype_from_scalar_errors():
(Timestamp("20160101", tz="UTC"), "datetime64[s, UTC]"),
],
)
def test_infer_dtype_from_scalar(value, expected):
def test_infer_dtype_from_scalar(value, expected, using_infer_string):
dtype, _ = infer_dtype_from_scalar(value)
if using_infer_string and value == "foo":
expected = "string"
assert is_dtype_equal(dtype, expected)

with pytest.raises(TypeError, match="must be list-like"):
Expand Down Expand Up @@ -189,8 +191,14 @@ def test_infer_dtype_from_scalar(value, expected):
),
],
)
def test_infer_dtype_from_array(arr, expected):
def test_infer_dtype_from_array(arr, expected, using_infer_string):
dtype, _ = infer_dtype_from_array(arr)
if (
using_infer_string
and isinstance(arr, Series)
and arr.tolist() == ["a", "b", "c"]
):
expected = "string"
assert is_dtype_equal(dtype, expected)


Expand Down
8 changes: 4 additions & 4 deletions pandas/tests/dtypes/test_common.py
Original file line number Diff line number Diff line change
Expand Up @@ -676,9 +676,9 @@ def test_is_complex_dtype():
(np.dtype("float64"), np.dtype("float64")),
(str, np.dtype(str)),
(pd.Series([1, 2], dtype=np.dtype("int16")), np.dtype("int16")),
(pd.Series(["a", "b"]), np.dtype(object)),
(pd.Series(["a", "b"], dtype=object), np.dtype(object)),
(pd.Index([1, 2]), np.dtype("int64")),
(pd.Index(["a", "b"]), np.dtype(object)),
(pd.Index(["a", "b"], dtype=object), np.dtype(object)),
("category", "category"),
(pd.Categorical(["a", "b"]).dtype, CategoricalDtype(["a", "b"])),
(pd.Categorical(["a", "b"]), CategoricalDtype(["a", "b"])),
Expand Down Expand Up @@ -727,9 +727,9 @@ def test_get_dtype_fails(input_param, expected_error_message):
(np.dtype("float64"), np.float64),
(str, np.dtype(str).type),
(pd.Series([1, 2], dtype=np.dtype("int16")), np.int16),
(pd.Series(["a", "b"]), np.object_),
(pd.Series(["a", "b"], dtype=object), np.object_),
(pd.Index([1, 2], dtype="int64"), np.int64),
(pd.Index(["a", "b"]), np.object_),
(pd.Index(["a", "b"], dtype=object), np.object_),
("category", CategoricalDtypeType),
(pd.Categorical(["a", "b"]).dtype, CategoricalDtypeType),
(pd.Categorical(["a", "b"]), CategoricalDtypeType),
Expand Down
5 changes: 3 additions & 2 deletions pandas/tests/dtypes/test_dtypes.py
Original file line number Diff line number Diff line change
Expand Up @@ -1054,13 +1054,14 @@ def test_from_categorical_dtype_both(self):
)
assert result == CategoricalDtype([1, 2], ordered=False)

def test_str_vs_repr(self, ordered):
def test_str_vs_repr(self, ordered, using_infer_string):
c1 = CategoricalDtype(["a", "b"], ordered=ordered)
assert str(c1) == "category"
# Py2 will have unicode prefixes
dtype = "string" if using_infer_string else "object"
pat = (
r"CategoricalDtype\(categories=\[.*\], ordered={ordered}, "
r"categories_dtype=object\)"
rf"categories_dtype={dtype}\)"
)
assert re.match(pat.format(ordered=ordered), repr(c1))

Expand Down
Loading