Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

REF: misplaced tests, parametrize, simplify #55870

Merged
merged 10 commits into from
Nov 7, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
95 changes: 19 additions & 76 deletions pandas/tests/arithmetic/test_datetime64.py
Original file line number Diff line number Diff line change
Expand Up @@ -1421,8 +1421,9 @@ def test_dt64arr_add_sub_relativedelta_offsets(self, box_with_array, unit):
@pytest.mark.parametrize("normalize", [True, False])
@pytest.mark.parametrize("n", [0, 5])
@pytest.mark.parametrize("unit", ["s", "ms", "us", "ns"])
@pytest.mark.parametrize("tz", [None, "US/Central"])
def test_dt64arr_add_sub_DateOffsets(
self, box_with_array, n, normalize, cls_and_kwargs, unit
self, box_with_array, n, normalize, cls_and_kwargs, unit, tz
):
# GH#10699
# assert vectorized operation matches pointwise operations
Expand All @@ -1444,33 +1445,33 @@ def test_dt64arr_add_sub_DateOffsets(
# passing n = 0 is invalid for these offset classes
return

vec = DatetimeIndex(
[
Timestamp("2000-01-05 00:15:00"),
Timestamp("2000-01-31 00:23:00"),
Timestamp("2000-01-01"),
Timestamp("2000-03-31"),
Timestamp("2000-02-29"),
Timestamp("2000-12-31"),
Timestamp("2000-05-15"),
Timestamp("2001-06-15"),
]
).as_unit(unit)
vec = (
DatetimeIndex(
[
Timestamp("2000-01-05 00:15:00"),
Timestamp("2000-01-31 00:23:00"),
Timestamp("2000-01-01"),
Timestamp("2000-03-31"),
Timestamp("2000-02-29"),
Timestamp("2000-12-31"),
Timestamp("2000-05-15"),
Timestamp("2001-06-15"),
]
)
.as_unit(unit)
.tz_localize(tz)
)
vec = tm.box_expected(vec, box_with_array)
vec_items = vec.iloc[0] if box_with_array is pd.DataFrame else vec

offset_cls = getattr(pd.offsets, cls_name)

# pandas.errors.PerformanceWarning: Non-vectorized DateOffset being
# applied to Series or DatetimeIndex
# we aren't testing that here, so ignore.

offset = offset_cls(n, normalize=normalize, **kwargs)

# TODO(GH#55564): as_unit will be unnecessary
expected = DatetimeIndex([x + offset for x in vec_items]).as_unit(unit)
expected = tm.box_expected(expected, box_with_array)
tm.assert_equal(expected, vec + offset)
tm.assert_equal(expected, offset + vec)

expected = DatetimeIndex([x - offset for x in vec_items]).as_unit(unit)
expected = tm.box_expected(expected, box_with_array)
Expand All @@ -1483,64 +1484,6 @@ def test_dt64arr_add_sub_DateOffsets(
with pytest.raises(TypeError, match=msg):
offset - vec

def test_dt64arr_add_sub_DateOffset(self, box_with_array):
# GH#10699
s = date_range("2000-01-01", "2000-01-31", name="a")
s = tm.box_expected(s, box_with_array)
result = s + DateOffset(years=1)
result2 = DateOffset(years=1) + s
exp = date_range("2001-01-01", "2001-01-31", name="a")._with_freq(None)
exp = tm.box_expected(exp, box_with_array)
tm.assert_equal(result, exp)
tm.assert_equal(result2, exp)

result = s - DateOffset(years=1)
exp = date_range("1999-01-01", "1999-01-31", name="a")._with_freq(None)
exp = tm.box_expected(exp, box_with_array)
tm.assert_equal(result, exp)

s = DatetimeIndex(
[
Timestamp("2000-01-15 00:15:00", tz="US/Central"),
Timestamp("2000-02-15", tz="US/Central"),
],
name="a",
)
s = tm.box_expected(s, box_with_array)
result = s + pd.offsets.Day()
result2 = pd.offsets.Day() + s
exp = DatetimeIndex(
[
Timestamp("2000-01-16 00:15:00", tz="US/Central"),
Timestamp("2000-02-16", tz="US/Central"),
],
name="a",
)
exp = tm.box_expected(exp, box_with_array)
tm.assert_equal(result, exp)
tm.assert_equal(result2, exp)

s = DatetimeIndex(
[
Timestamp("2000-01-15 00:15:00", tz="US/Central"),
Timestamp("2000-02-15", tz="US/Central"),
],
name="a",
)
s = tm.box_expected(s, box_with_array)
result = s + pd.offsets.MonthEnd()
result2 = pd.offsets.MonthEnd() + s
exp = DatetimeIndex(
[
Timestamp("2000-01-31 00:15:00", tz="US/Central"),
Timestamp("2000-02-29", tz="US/Central"),
],
name="a",
)
exp = tm.box_expected(exp, box_with_array)
tm.assert_equal(result, exp)
tm.assert_equal(result2, exp)

@pytest.mark.parametrize(
"other",
[
Expand Down
12 changes: 12 additions & 0 deletions pandas/tests/arithmetic/test_numeric.py
Original file line number Diff line number Diff line change
Expand Up @@ -1393,6 +1393,18 @@ def test_addsub_arithmetic(self, dtype, delta):
tm.assert_index_equal(index - index, 0 * index)
assert not (index - index).empty

def test_pow_nan_with_zero(self, box_with_array):
left = Index([np.nan, np.nan, np.nan])
right = Index([0, 0, 0])
expected = Index([1.0, 1.0, 1.0])

left = tm.box_expected(left, box_with_array)
right = tm.box_expected(right, box_with_array)
expected = tm.box_expected(expected, box_with_array)

result = left**right
tm.assert_equal(result, expected)


def test_fill_value_inf_masking():
# GH #27464 make sure we mask 0/1 with Inf and not NaN
Expand Down
1 change: 0 additions & 1 deletion pandas/tests/arrays/integer/test_dtypes.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,6 @@ def test_dtypes(dtype):

@pytest.mark.parametrize("op", ["sum", "min", "max", "prod"])
def test_preserve_dtypes(op):
# TODO(#22346): preserve Int64 dtype
# for ops that enable (mean would actually work here
# but generally it is a float return value)
df = pd.DataFrame(
Expand Down
13 changes: 13 additions & 0 deletions pandas/tests/arrays/interval/test_formats.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
from pandas.core.arrays import IntervalArray


def test_repr():
# GH#25022
arr = IntervalArray.from_tuples([(0, 1), (1, 2)])
result = repr(arr)
expected = (
"<IntervalArray>\n"
"[(0, 1], (1, 2]]\n"
"Length: 2, dtype: interval[int64, right]"
)
assert result == expected
12 changes: 0 additions & 12 deletions pandas/tests/arrays/interval/test_interval.py
Original file line number Diff line number Diff line change
Expand Up @@ -166,18 +166,6 @@ def test_setitem_mismatched_closed(self):
tm.assert_interval_array_equal(arr, orig)


def test_repr():
# GH 25022
arr = IntervalArray.from_tuples([(0, 1), (1, 2)])
result = repr(arr)
expected = (
"<IntervalArray>\n"
"[(0, 1], (1, 2]]\n"
"Length: 2, dtype: interval[int64, right]"
)
assert result == expected


class TestReductions:
def test_min_max_invalid_axis(self, left_right_dtypes):
left, right = left_right_dtypes
Expand Down
54 changes: 16 additions & 38 deletions pandas/tests/frame/methods/test_reset_index.py
Original file line number Diff line number Diff line change
Expand Up @@ -82,7 +82,8 @@ def test_reset_index_tz(self, tz_aware_fixture):
},
columns=["idx", "a", "b"],
)
tm.assert_frame_equal(df.reset_index(), expected)
result = df.reset_index()
tm.assert_frame_equal(result, expected)

@pytest.mark.parametrize("tz", ["US/Eastern", "dateutil/US/Eastern"])
def test_frame_reset_index_tzaware_index(self, tz):
Expand Down Expand Up @@ -487,23 +488,20 @@ def test_reset_index_datetime(self, tz_naive_fixture):

expected = DataFrame(
{
"idx1": [
datetime(2011, 1, 1),
datetime(2011, 1, 2),
datetime(2011, 1, 3),
datetime(2011, 1, 4),
datetime(2011, 1, 5),
],
"idx1": idx1,
"idx2": np.arange(5, dtype="int64"),
"a": np.arange(5, dtype="int64"),
"b": ["A", "B", "C", "D", "E"],
},
columns=["idx1", "idx2", "a", "b"],
)
expected["idx1"] = expected["idx1"].apply(lambda d: Timestamp(d, tz=tz))

tm.assert_frame_equal(df.reset_index(), expected)

def test_reset_index_datetime2(self, tz_naive_fixture):
tz = tz_naive_fixture
idx1 = date_range("1/1/2011", periods=5, freq="D", tz=tz, name="idx1")
idx2 = Index(range(5), name="idx2", dtype="int64")
idx3 = date_range(
"1/1/2012", periods=5, freq="MS", tz="Europe/Paris", name="idx3"
)
Expand All @@ -515,54 +513,34 @@ def test_reset_index_datetime(self, tz_naive_fixture):

expected = DataFrame(
{
"idx1": [
datetime(2011, 1, 1),
datetime(2011, 1, 2),
datetime(2011, 1, 3),
datetime(2011, 1, 4),
datetime(2011, 1, 5),
],
"idx1": idx1,
"idx2": np.arange(5, dtype="int64"),
"idx3": [
datetime(2012, 1, 1),
datetime(2012, 2, 1),
datetime(2012, 3, 1),
datetime(2012, 4, 1),
datetime(2012, 5, 1),
],
"idx3": idx3,
"a": np.arange(5, dtype="int64"),
"b": ["A", "B", "C", "D", "E"],
},
columns=["idx1", "idx2", "idx3", "a", "b"],
)
expected["idx1"] = expected["idx1"].apply(lambda d: Timestamp(d, tz=tz))
expected["idx3"] = expected["idx3"].apply(
lambda d: Timestamp(d, tz="Europe/Paris")
)
tm.assert_frame_equal(df.reset_index(), expected)
result = df.reset_index()
tm.assert_frame_equal(result, expected)

def test_reset_index_datetime3(self, tz_naive_fixture):
# GH#7793
idx = MultiIndex.from_product(
[["a", "b"], date_range("20130101", periods=3, tz=tz)]
)
tz = tz_naive_fixture
dti = date_range("20130101", periods=3, tz=tz)
idx = MultiIndex.from_product([["a", "b"], dti])
df = DataFrame(
np.arange(6, dtype="int64").reshape(6, 1), columns=["a"], index=idx
)

expected = DataFrame(
{
"level_0": "a a a b b b".split(),
"level_1": [
datetime(2013, 1, 1),
datetime(2013, 1, 2),
datetime(2013, 1, 3),
]
* 2,
"level_1": dti.append(dti),
"a": np.arange(6, dtype="int64"),
},
columns=["level_0", "level_1", "a"],
)
expected["level_1"] = expected["level_1"].apply(lambda d: Timestamp(d, tz=tz))
result = df.reset_index()
tm.assert_frame_equal(result, expected)

Expand Down
14 changes: 0 additions & 14 deletions pandas/tests/frame/test_arithmetic.py
Original file line number Diff line number Diff line change
Expand Up @@ -1904,20 +1904,6 @@ def test_pow_with_realignment():
tm.assert_frame_equal(result, expected)


# TODO: move to tests.arithmetic and parametrize
def test_pow_nan_with_zero():
left = DataFrame({"A": [np.nan, np.nan, np.nan]})
right = DataFrame({"A": [0, 0, 0]})

expected = DataFrame({"A": [1.0, 1.0, 1.0]})

result = left**right
tm.assert_frame_equal(result, expected)

result = left["A"] ** right["A"]
tm.assert_series_equal(result, expected["A"])


def test_dataframe_series_extension_dtypes():
# https://github.com/pandas-dev/pandas/issues/34311
df = DataFrame(
Expand Down
Loading
Loading