Skip to content

Commit

Permalink
Merge branch 'main' into pandas-asan
Browse files Browse the repository at this point in the history
  • Loading branch information
lithomas1 authored Nov 28, 2023
2 parents 929c731 + ae6d279 commit b01242b
Show file tree
Hide file tree
Showing 443 changed files with 8,919 additions and 5,766 deletions.
2 changes: 1 addition & 1 deletion .github/workflows/comment-commands.yml
Original file line number Diff line number Diff line change
Expand Up @@ -77,7 +77,7 @@ jobs:
echo 'EOF' >> $GITHUB_ENV
echo "REGEX=$REGEX" >> $GITHUB_ENV
- uses: actions/github-script@v6
- uses: actions/github-script@v7
env:
BENCH_OUTPUT: ${{env.BENCH_OUTPUT}}
REGEX: ${{env.REGEX}}
Expand Down
2 changes: 1 addition & 1 deletion .github/workflows/deprecation-tracking-bot.yml
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ jobs:
env:
DEPRECATION_TRACKER_ISSUE: 50578
steps:
- uses: actions/github-script@v6
- uses: actions/github-script@v7
id: update-deprecation-issue
with:
script: |
Expand Down
15 changes: 12 additions & 3 deletions .github/workflows/unit-tests.yml
Original file line number Diff line number Diff line change
Expand Up @@ -73,6 +73,14 @@ jobs:
env_file: actions-311.yaml
pattern: "not slow and not network and not single_cpu"
pandas_copy_on_write: "warn"
- name: "Copy-on-Write 3.10 (warnings)"
env_file: actions-310.yaml
pattern: "not slow and not network and not single_cpu"
pandas_copy_on_write: "warn"
- name: "Copy-on-Write 3.9 (warnings)"
env_file: actions-39.yaml
pattern: "not slow and not network and not single_cpu"
pandas_copy_on_write: "warn"
- name: "Pypy"
env_file: actions-pypy-39.yaml
pattern: "not slow and not network and not single_cpu"
Expand All @@ -93,7 +101,6 @@ jobs:
name: ${{ matrix.name || format('ubuntu-latest {0}', matrix.env_file) }}
env:
PATTERN: ${{ matrix.pattern }}
EXTRA_APT: ${{ matrix.extra_apt || '' }}
LANG: ${{ matrix.lang || 'C.UTF-8' }}
LC_ALL: ${{ matrix.lc_all || '' }}
PANDAS_COPY_ON_WRITE: ${{ matrix.pandas_copy_on_write || '0' }}
Expand All @@ -102,6 +109,8 @@ jobs:
SANITIZE: ${{ matrix.sanitize || false }}
PYTEST_WORKERS: 'auto'
PYTEST_TARGET: ${{ matrix.pytest_target || 'pandas' }}
# Clipboard tests
QT_QPA_PLATFORM: offscreen
concurrency:
# https://github.community/t/concurrecy-not-work-for-push/183068/7
group: ${{ github.event_name == 'push' && github.run_number || github.ref }}-${{ matrix.env_file }}-${{ matrix.pattern }}-${{ matrix.extra_apt || '' }}-${{ matrix.pandas_copy_on_write || '' }}
Expand Down Expand Up @@ -151,8 +160,8 @@ jobs:
fetch-depth: 0

- name: Extra installs
# xsel for clipboard tests
run: sudo apt-get update && sudo apt-get install -y xsel ${{ env.EXTRA_APT }}
run: sudo apt-get update && sudo apt-get install -y ${{ matrix.extra_apt }}
if: ${{ matrix.extra_apt }}

- name: Generate extra locales
# These extra locales will be available for locale.setlocale() calls in tests
Expand Down
15 changes: 9 additions & 6 deletions asv_bench/benchmarks/algorithms.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,8 +4,6 @@

import pandas as pd

from .pandas_vb_common import tm

for imp in ["pandas.util", "pandas.tools.hashing"]:
try:
hashing = import_module(imp)
Expand Down Expand Up @@ -47,9 +45,12 @@ def setup(self, unique, sort, dtype):
elif dtype == "datetime64[ns, tz]":
data = pd.date_range("2011-01-01", freq="h", periods=N, tz="Asia/Tokyo")
elif dtype == "object_str":
data = tm.makeStringIndex(N)
data = pd.Index([f"i-{i}" for i in range(N)], dtype=object)
elif dtype == "string[pyarrow]":
data = pd.array(tm.makeStringIndex(N), dtype="string[pyarrow]")
data = pd.array(
pd.Index([f"i-{i}" for i in range(N)], dtype=object),
dtype="string[pyarrow]",
)
else:
raise NotImplementedError

Expand Down Expand Up @@ -88,7 +89,7 @@ def setup(self, unique, keep, dtype):
elif dtype == "float64":
data = pd.Index(np.random.randn(N), dtype="float64")
elif dtype == "string":
data = tm.makeStringIndex(N)
data = pd.Index([f"i-{i}" for i in range(N)], dtype=object)
elif dtype == "datetime64[ns]":
data = pd.date_range("2011-01-01", freq="h", periods=N)
elif dtype == "datetime64[ns, tz]":
Expand Down Expand Up @@ -136,7 +137,9 @@ def setup_cache(self):
df = pd.DataFrame(
{
"strings": pd.Series(
tm.makeStringIndex(10000).take(np.random.randint(0, 10000, size=N))
pd.Index([f"i-{i}" for i in range(10000)], dtype=object).take(
np.random.randint(0, 10000, size=N)
)
),
"floats": np.random.randn(N),
"ints": np.arange(N),
Expand Down
6 changes: 3 additions & 3 deletions asv_bench/benchmarks/algos/isin.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,8 +8,6 @@
date_range,
)

from ..pandas_vb_common import tm


class IsIn:
params = [
Expand Down Expand Up @@ -60,7 +58,9 @@ def setup(self, dtype):

elif dtype in ["str", "string[python]", "string[pyarrow]"]:
try:
self.series = Series(tm.makeStringIndex(N), dtype=dtype)
self.series = Series(
Index([f"i-{i}" for i in range(N)], dtype=object), dtype=dtype
)
except ImportError:
raise NotImplementedError
self.values = list(self.series[:2])
Expand Down
8 changes: 3 additions & 5 deletions asv_bench/benchmarks/categoricals.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,8 +6,6 @@

import pandas as pd

from .pandas_vb_common import tm

try:
from pandas.api.types import union_categoricals
except ImportError:
Expand Down Expand Up @@ -189,7 +187,7 @@ def setup(self):
N = 10**5
ncats = 15

self.s_str = pd.Series(tm.makeCategoricalIndex(N, ncats)).astype(str)
self.s_str = pd.Series(np.random.randint(0, ncats, size=N).astype(str))
self.s_str_cat = pd.Series(self.s_str, dtype="category")
with warnings.catch_warnings(record=True):
str_cat_type = pd.CategoricalDtype(set(self.s_str), ordered=True)
Expand Down Expand Up @@ -242,7 +240,7 @@ def time_categorical_series_is_monotonic_decreasing(self):
class Contains:
def setup(self):
N = 10**5
self.ci = tm.makeCategoricalIndex(N)
self.ci = pd.CategoricalIndex(np.arange(N))
self.c = self.ci.values
self.key = self.ci.categories[0]

Expand Down Expand Up @@ -325,7 +323,7 @@ def time_sort_values(self):
class SearchSorted:
def setup(self):
N = 10**5
self.ci = tm.makeCategoricalIndex(N).sort_values()
self.ci = pd.CategoricalIndex(np.arange(N)).sort_values()
self.c = self.ci.values
self.key = self.ci.categories[1]

Expand Down
4 changes: 1 addition & 3 deletions asv_bench/benchmarks/ctors.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,8 +9,6 @@
date_range,
)

from .pandas_vb_common import tm


def no_change(arr):
return arr
Expand Down Expand Up @@ -115,7 +113,7 @@ def time_dtindex_from_index_with_series(self):
class MultiIndexConstructor:
def setup(self):
N = 10**4
self.iterables = [tm.makeStringIndex(N), range(20)]
self.iterables = [Index([f"i-{i}" for i in range(N)], dtype=object), range(20)]

def time_multiindex_from_iterables(self):
MultiIndex.from_product(self.iterables)
Expand Down
9 changes: 6 additions & 3 deletions asv_bench/benchmarks/dtypes.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,10 @@
import numpy as np

import pandas as pd
from pandas import DataFrame
from pandas import (
DataFrame,
Index,
)
import pandas._testing as tm
from pandas.api.types import (
is_extension_array_dtype,
Expand Down Expand Up @@ -73,8 +76,8 @@ class SelectDtypes:

def setup(self, dtype):
N, K = 5000, 50
self.index = tm.makeStringIndex(N)
self.columns = tm.makeStringIndex(K)
self.index = Index([f"i-{i}" for i in range(N)], dtype=object)
self.columns = Index([f"i-{i}" for i in range(K)], dtype=object)

def create_df(data):
return DataFrame(data, index=self.index, columns=self.columns)
Expand Down
6 changes: 2 additions & 4 deletions asv_bench/benchmarks/frame_ctor.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,8 +12,6 @@
date_range,
)

from .pandas_vb_common import tm

try:
from pandas.tseries.offsets import (
Hour,
Expand All @@ -30,8 +28,8 @@
class FromDicts:
def setup(self):
N, K = 5000, 50
self.index = tm.makeStringIndex(N)
self.columns = tm.makeStringIndex(K)
self.index = pd.Index([f"i-{i}" for i in range(N)], dtype=object)
self.columns = pd.Index([f"i-{i}" for i in range(K)], dtype=object)
frame = DataFrame(np.random.randn(N, K), index=self.index, columns=self.columns)
self.data = frame.to_dict()
self.dict_list = frame.to_dict(orient="records")
Expand Down
11 changes: 7 additions & 4 deletions asv_bench/benchmarks/frame_methods.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@

from pandas import (
DataFrame,
Index,
MultiIndex,
NaT,
Series,
Expand All @@ -14,8 +15,6 @@
timedelta_range,
)

from .pandas_vb_common import tm


class AsType:
params = [
Expand Down Expand Up @@ -703,8 +702,12 @@ def setup(self, monotonic):
K = 10
df = DataFrame(
{
"key1": tm.makeStringIndex(N).values.repeat(K),
"key2": tm.makeStringIndex(N).values.repeat(K),
"key1": Index([f"i-{i}" for i in range(N)], dtype=object).values.repeat(
K
),
"key2": Index([f"i-{i}" for i in range(N)], dtype=object).values.repeat(
K
),
"value": np.random.randn(N * K),
}
)
Expand Down
6 changes: 2 additions & 4 deletions asv_bench/benchmarks/gil.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,15 +5,14 @@

from pandas import (
DataFrame,
Index,
Series,
date_range,
factorize,
read_csv,
)
from pandas.core.algorithms import take_nd

from .pandas_vb_common import tm

try:
from pandas import (
rolling_kurt,
Expand All @@ -34,7 +33,6 @@
except ImportError:
from pandas import algos


from .pandas_vb_common import BaseIO # isort:skip


Expand Down Expand Up @@ -305,7 +303,7 @@ class ParallelFactorize:
param_names = ["threads"]

def setup(self, threads):
strings = tm.makeStringIndex(100000)
strings = Index([f"i-{i}" for i in range(100000)], dtype=object)

@test_parallel(num_threads=threads)
def parallel():
Expand Down
57 changes: 52 additions & 5 deletions asv_bench/benchmarks/groupby.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,8 +17,6 @@
to_timedelta,
)

from .pandas_vb_common import tm

method_blocklist = {
"object": {
"diff",
Expand Down Expand Up @@ -167,10 +165,14 @@ def setup_cache(self):
"int64_small": Series(np.random.randint(0, 100, size=size)),
"int64_large": Series(np.random.randint(0, 10000, size=size)),
"object_small": Series(
tm.makeStringIndex(100).take(np.random.randint(0, 100, size=size))
Index([f"i-{i}" for i in range(100)], dtype=object).take(
np.random.randint(0, 100, size=size)
)
),
"object_large": Series(
tm.makeStringIndex(10000).take(np.random.randint(0, 10000, size=size))
Index([f"i-{i}" for i in range(10000)], dtype=object).take(
np.random.randint(0, 10000, size=size)
)
),
}
return data
Expand Down Expand Up @@ -802,6 +804,51 @@ def time_groupby_extra_cat_nosort(self, observed):
self.df_extra_cat.groupby("a", observed=observed, sort=False)["b"].count()


class MultipleCategories:
def setup(self):
N = 10**3
arr = np.random.random(N)
data = {
"a1": Categorical(np.random.randint(10000, size=N)),
"a2": Categorical(np.random.randint(10000, size=N)),
"b": arr,
}
self.df = DataFrame(data)
data = {
"a1": Categorical(np.random.randint(10000, size=N), ordered=True),
"a2": Categorical(np.random.randint(10000, size=N), ordered=True),
"b": arr,
}
self.df_ordered = DataFrame(data)
data = {
"a1": Categorical(np.random.randint(100, size=N), categories=np.arange(N)),
"a2": Categorical(np.random.randint(100, size=N), categories=np.arange(N)),
"b": arr,
}
self.df_extra_cat = DataFrame(data)

def time_groupby_sort(self):
self.df.groupby(["a1", "a2"], observed=False)["b"].count()

def time_groupby_nosort(self):
self.df.groupby(["a1", "a2"], observed=False, sort=False)["b"].count()

def time_groupby_ordered_sort(self):
self.df_ordered.groupby(["a1", "a2"], observed=False)["b"].count()

def time_groupby_ordered_nosort(self):
self.df_ordered.groupby(["a1", "a2"], observed=False, sort=False)["b"].count()

def time_groupby_extra_cat_sort(self):
self.df_extra_cat.groupby(["a1", "a2"], observed=False)["b"].count()

def time_groupby_extra_cat_nosort(self):
self.df_extra_cat.groupby(["a1", "a2"], observed=False, sort=False)["b"].count()

def time_groupby_transform(self):
self.df_extra_cat.groupby(["a1", "a2"], observed=False)["b"].cumsum()


class Datelike:
# GH 14338
params = ["period_range", "date_range", "date_range_tz"]
Expand Down Expand Up @@ -867,7 +914,7 @@ def setup(self):
n1 = 400
n2 = 250
index = MultiIndex(
levels=[np.arange(n1), tm.makeStringIndex(n2)],
levels=[np.arange(n1), Index([f"i-{i}" for i in range(n2)], dtype=object)],
codes=[np.repeat(range(n1), n2).tolist(), list(range(n2)) * n1],
names=["lev1", "lev2"],
)
Expand Down
Loading

0 comments on commit b01242b

Please sign in to comment.