v0.9.0b4
Pre-release
Pre-release
github-actions
released this
27 Jan 10:04
·
2054 commits
to main
since this release
Human-in-the-loop Optimization
$ pip install Pillow optuna==3.1.0 optuna-dashboard==0.9.0b4
from __future__ import annotations
import os
import textwrap
import threading
import time
from typing import NoReturn
from wsgiref.simple_server import make_server
import optuna
from PIL import Image
from optuna.trial import TrialState
from optuna_dashboard import ObjectiveChoiceWidget, save_note, ObjectiveSliderWidget
from optuna_dashboard import register_objective_form_widgets
from optuna_dashboard import set_objective_names
from optuna_dashboard import wsgi
from optuna_dashboard.artifact import upload_artifact
from optuna_dashboard.artifact.file_system import FileSystemBackend
storage = optuna.storages.InMemoryStorage()
base_path = os.path.join(os.path.dirname(__file__), "artifact")
artifact_backend = FileSystemBackend(base_path=base_path)
def suggest_and_generate_image(study: optuna.Study) -> None:
# Ask new parameters
trial = study.ask()
r = trial.suggest_int("r", 0, 255)
g = trial.suggest_int("g", 0, 255)
b = trial.suggest_int("b", 0, 255)
# Generate image
image_path = f"tmp/sample-{trial.number}.png"
image = Image.new("RGB", (320, 240), color=(r,g,b))
image.save(image_path)
# Upload Artifact
artifact_id = upload_artifact(artifact_backend, trial, image_path)
# Save Note
note = textwrap.dedent(f'''\
## Trial {trial.number}
![generated-image](/artifacts/{study._study_id}/{trial._trial_id}/{artifact_id})
''')
save_note(trial, note)
def start_preferential_optimization() -> NoReturn:
# Create Study
study = optuna.create_study(
study_name="Human-in-the-loop Optimization",
storage=storage,
directions=["minimize", "maximize"]
)
set_objective_names(study, ["Human Perception Score", "Looks Yellow?"])
register_objective_form_widgets(study, widgets=[
ObjectiveChoiceWidget(
choices=["Good 👍", "Bad 👎"],
values=[-1, 1],
description="Please input your score!",
),
ObjectiveSliderWidget(
min=1,
max=10,
step=1,
description="Higher is better.",
),
])
# Start Human-in-the-loop Optimization
n_batch = 3
while True:
running_trials = study.get_trials(deepcopy=False, states=(TrialState.RUNNING,))
if len(running_trials) >= n_batch:
time.sleep(5)
continue
suggest_and_generate_image(study)
def main() -> None:
if not os.path.exists(base_path):
os.mkdir(base_path)
# Start Dashboard server on background
app = wsgi(storage, artifact_backend=artifact_backend)
httpd = make_server("127.0.0.1", 8080, app)
thread = threading.Thread(target=httpd.serve_forever)
thread.start()
# Run optimize loop
try:
start_preferential_optimization()
except KeyboardInterrupt:
httpd.shutdown()
httpd.server_close()
thread.join()
if __name__ == "__main__":
main()
What's Changed
- Fix bug of custom user widgets and enhance artifact support. by @c-bata in #375
- Update best trials when state is updated by @c-bata in #376
- Bump the version up to v0.9.0b4 by @c-bata in #377
Full Changelog: v0.9.0b3...v0.9.0b4