-
Notifications
You must be signed in to change notification settings - Fork 377
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
add hpt model and corresponding examples. #839
Closed
+325
−1
Closed
Changes from all commits
Commits
Show all changes
2 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,152 @@ | ||
from typing import Union, Optional, Dict, Callable, List | ||
from einops import rearrange, repeat | ||
import torch | ||
import torch.nn as nn | ||
from ding.model.common.head import DuelingHead | ||
from ding.utils.registry_factory import MODEL_REGISTRY | ||
|
||
|
||
INIT_CONST = 0.02 | ||
|
||
@MODEL_REGISTRY.register('hpt') | ||
class HPT(nn.Module): | ||
def __init__(self, state_dim, action_dim): | ||
super(HPT, self).__init__() | ||
# Initialise Policy Stem | ||
self.policy_stem = PolicyStem() | ||
self.policy_stem.init_cross_attn() | ||
|
||
# Dueling Head, input is 16*128, output is action dimension | ||
self.head = DuelingHead(hidden_size=16*128, output_size=action_dim) | ||
def forward(self, x): | ||
# Policy Stem Outputs [B, 16, 128] | ||
tokens = self.policy_stem.compute_latent(x) | ||
# Flatten Operation | ||
tokens_flattened = tokens.view(tokens.size(0), -1) # [B, 16*128] | ||
# Enter to Dueling Head | ||
q_values = self.head(tokens_flattened) | ||
return q_values | ||
|
||
|
||
|
||
class PolicyStem(nn.Module): | ||
"""policy stem | ||
Overview: | ||
The reference uses PolicyStem from | ||
<https://github.com/liruiw/HPT/blob/main/hpt/models/policy_stem.py> | ||
""" | ||
def __init__(self, feature_dim: int = 8, token_dim: int = 128, **kwargs): | ||
super().__init__() | ||
# Initialise the feature extraction module | ||
self.feature_extractor = nn.Linear(feature_dim, token_dim) | ||
# Initialise CrossAttention | ||
self.init_cross_attn() | ||
|
||
def init_cross_attn(self): | ||
"""Initialize cross attention module and learnable tokens.""" | ||
token_num = 16 | ||
self.tokens = nn.Parameter(torch.randn(1, token_num, 128) * INIT_CONST) | ||
self.cross_attention = CrossAttention(128, heads=8, dim_head=64, dropout=0.1) | ||
|
||
def compute_latent(self, x: torch.Tensor) -> torch.Tensor: | ||
""" | ||
Compute latent representations of input data using attention. | ||
Args: | ||
x (torch.Tensor): Input tensor with shape [B, T, ..., F]. | ||
Returns: | ||
torch.Tensor: Latent tokens, shape [B, 16, 128]. | ||
""" | ||
# Using the Feature Extractor | ||
stem_feat = self.feature_extractor(x) | ||
stem_feat = stem_feat.reshape(stem_feat.shape[0], -1, stem_feat.shape[-1]) # (B, N, 128) | ||
# Calculating latent tokens using CrossAttention | ||
stem_tokens = self.tokens.repeat(len(stem_feat), 1, 1) # (B, 16, 128) | ||
stem_tokens = self.cross_attention(stem_tokens, stem_feat) # (B, 16, 128) | ||
return stem_tokens | ||
def forward(self, x: torch.Tensor) -> torch.Tensor: | ||
""" | ||
Forward pass to compute latent tokens. | ||
Args: | ||
x (torch.Tensor): Input tensor. | ||
Returns: | ||
torch.Tensor: Latent tokens tensor. | ||
""" | ||
return self.compute_latent(x) | ||
|
||
def freeze(self): | ||
for param in self.parameters(): | ||
param.requires_grad = False | ||
|
||
def unfreeze(self): | ||
for param in self.parameters(): | ||
param.requires_grad = True | ||
|
||
def save(self, path : str): | ||
torch.save(self.state_dict(), path) | ||
|
||
@property | ||
def device(self): | ||
return next(self.parameters()).device | ||
|
||
class CrossAttention(nn.Module): | ||
""" | ||
CrossAttention module used in the Perceiver IO model. | ||
Args: | ||
query_dim (int): The dimension of the query input. | ||
heads (int, optional): The number of attention heads. Defaults to 8. | ||
dim_head (int, optional): The dimension of each attention head. Defaults to 64. | ||
dropout (float, optional): The dropout probability. Defaults to 0.0. | ||
""" | ||
|
||
def __init__(self, query_dim: int, heads: int = 8, dim_head: int = 64, dropout: float = 0.0): | ||
super().__init__() | ||
inner_dim = dim_head * heads | ||
context_dim = query_dim | ||
self.scale = dim_head**-0.5 | ||
self.heads = heads | ||
|
||
self.to_q = nn.Linear(query_dim, inner_dim, bias=False) | ||
self.to_kv = nn.Linear(context_dim, inner_dim * 2, bias=False) | ||
self.to_out = nn.Linear(inner_dim, query_dim) | ||
|
||
self.dropout = nn.Dropout(dropout) | ||
|
||
def forward(self, x: torch.Tensor, context: torch.Tensor, | ||
mask: Optional[torch.Tensor] = None) -> torch.Tensor: | ||
""" | ||
Forward pass of the CrossAttention module. | ||
Args: | ||
x (torch.Tensor): The query input tensor. | ||
context (torch.Tensor): The context input tensor. | ||
mask (torch.Tensor, optional): The attention mask tensor. Defaults to None. | ||
Returns: | ||
torch.Tensor: The output tensor. | ||
""" | ||
h = self.heads | ||
q = self.to_q(x) | ||
k, v = self.to_kv(context).chunk(2, dim=-1) | ||
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), (q, k, v)) | ||
sim = torch.einsum("b i d, b j d -> b i j", q, k) * self.scale | ||
|
||
if mask is not None: | ||
# fill in the masks with negative values | ||
mask = rearrange(mask, "b ... -> b (...)") | ||
max_neg_value = -torch.finfo(sim.dtype).max | ||
mask = repeat(mask, "b j -> (b h) () j", h=h) | ||
sim.masked_fill_(~mask, max_neg_value) | ||
|
||
# attention, what we cannot get enough of | ||
attn = sim.softmax(dim=-1) | ||
|
||
# dropout | ||
attn = self.dropout(attn) | ||
out = torch.einsum("b i j, b j d -> b i d", attn, v) | ||
out = rearrange(out, "(b h) n d -> b n (h d)", h=h) | ||
return self.to_out(out) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,77 @@ | ||
from easydict import EasyDict | ||
|
||
nstep = 3 | ||
lunarlander_hpt_config = dict( | ||
exp_name='lunarlander_hpt_seed0', | ||
env=dict( | ||
# Whether to use shared memory. Only effective if "env_manager_type" is 'subprocess' | ||
# Env number respectively for collector and evaluator. | ||
collector_env_num=8, | ||
evaluator_env_num=8, | ||
env_id='LunarLander-v2', | ||
n_evaluator_episode=8, | ||
stop_value=200, | ||
# The path to save the game replay | ||
# replay_path='./lunarlander_hpt_seed0/video', | ||
), | ||
policy=dict( | ||
# Whether to use cuda for network. | ||
cuda=True, | ||
load_path="./lunarlander_hpt_seed0/ckpt/ckpt_best.pth.tar", | ||
model=dict( | ||
obs_shape=8, | ||
action_shape=4, | ||
), | ||
# Reward's future discount factor, aka. gamma. | ||
discount_factor=0.99, | ||
# How many steps in td error. | ||
nstep=nstep, | ||
# learn_mode config | ||
learn=dict( | ||
update_per_collect=10, | ||
batch_size=64, | ||
learning_rate=0.0005, | ||
# Frequency of target network update. | ||
target_update_freq=100, | ||
), | ||
# collect_mode config | ||
collect=dict( | ||
# You can use either "n_sample" or "n_episode" in collector.collect. | ||
# Get "n_sample" samples per collect. | ||
n_sample=64, | ||
# Cut trajectories into pieces with length "unroll_len". | ||
unroll_len=1, | ||
), | ||
# command_mode config | ||
other=dict( | ||
# Epsilon greedy with decay. | ||
eps=dict( | ||
# Decay type. Support ['exp', 'linear']. | ||
type='exp', | ||
start=0.95, | ||
end=0.1, | ||
decay=50000, | ||
), | ||
replay_buffer=dict(replay_buffer_size=100000, ) | ||
), | ||
), | ||
) | ||
lunarlander_hpt_config = EasyDict(lunarlander_hpt_config) | ||
main_config = lunarlander_hpt_config | ||
|
||
lunarlander_hpt_create_config = dict( | ||
env=dict( | ||
type='lunarlander', | ||
import_names=['dizoo.box2d.lunarlander.envs.lunarlander_env'], | ||
), | ||
env_manager=dict(type='subprocess'), | ||
# env_manager=dict(type='base'), | ||
policy=dict(type='dqn'), | ||
) | ||
lunarlander_hpt_create_config = EasyDict(lunarlander_hpt_create_config) | ||
create_config = lunarlander_hpt_create_config | ||
|
||
if __name__ == "__main__": | ||
# or you can enter `ding -m serial -c lunarlander_dqn_config.py -s 0` | ||
from ding.entry import serial_pipeline | ||
serial_pipeline([main_config, create_config], seed=0) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,80 @@ | ||
|
||
import gym | ||
import torch | ||
import torch.nn as nn | ||
from ditk import logging | ||
from ding.data.model_loader import FileModelLoader | ||
from ding.data.storage_loader import FileStorageLoader | ||
from ding.model.common.head import DuelingHead | ||
from ding.model.template.hpt import HPT | ||
from ding.policy import DQNPolicy | ||
from ding.envs import DingEnvWrapper, SubprocessEnvManagerV2 | ||
from ding.data import DequeBuffer | ||
from ding.config import compile_config | ||
from ding.framework import task, ding_init | ||
from ding.framework.context import OnlineRLContext | ||
from ding.framework.middleware import OffPolicyLearner, StepCollector, interaction_evaluator, data_pusher, \ | ||
eps_greedy_handler, CkptSaver, ContextExchanger, ModelExchanger, online_logger, termination_checker, \ | ||
nstep_reward_enhancer | ||
from ding.utils import set_pkg_seed | ||
from dizoo.box2d.lunarlander.config.lunarlander_hpt_config import main_config, create_config | ||
|
||
|
||
|
||
|
||
def main(): | ||
logging.getLogger().setLevel(logging.INFO) | ||
cfg = compile_config(main_config, create_cfg=create_config, auto=True, save_cfg=task.router.node_id == 0) | ||
ding_init(cfg) | ||
|
||
with task.start(async_mode=False, ctx=OnlineRLContext()): | ||
collector_env = SubprocessEnvManagerV2( | ||
env_fn=[lambda: DingEnvWrapper(gym.make("LunarLander-v2")) for _ in range(cfg.env.collector_env_num)], | ||
cfg=cfg.env.manager | ||
) | ||
evaluator_env = SubprocessEnvManagerV2( | ||
env_fn=[lambda: DingEnvWrapper(gym.make("LunarLander-v2")) for _ in range(cfg.env.evaluator_env_num)], | ||
cfg=cfg.env.manager | ||
) | ||
|
||
set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda) | ||
|
||
# Migrating models to the GPU | ||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | ||
model = HPT(cfg.policy.model.obs_shape,cfg.policy.model.action_shape).to(device) | ||
buffer_ = DequeBuffer(size=cfg.policy.other.replay_buffer.replay_buffer_size) | ||
|
||
# Pass the model into Policy | ||
policy = DQNPolicy(cfg.policy, model=model) | ||
|
||
# Consider the case with multiple processes | ||
if task.router.is_active: | ||
# You can use labels to distinguish between workers with different roles, | ||
# here we use node_id to distinguish. | ||
if task.router.node_id == 0: | ||
task.add_role(task.role.LEARNER) | ||
elif task.router.node_id == 1: | ||
task.add_role(task.role.EVALUATOR) | ||
else: | ||
task.add_role(task.role.COLLECTOR) | ||
|
||
# Sync their context and model between each worker. | ||
task.use(ContextExchanger(skip_n_iter=1)) | ||
task.use(ModelExchanger(model)) | ||
|
||
|
||
# Here is the part of single process pipeline. | ||
task.use(interaction_evaluator(cfg, policy.eval_mode, evaluator_env)) | ||
task.use(eps_greedy_handler(cfg)) | ||
task.use(StepCollector(cfg, policy.collect_mode, collector_env)) | ||
task.use(nstep_reward_enhancer(cfg)) | ||
task.use(data_pusher(cfg, buffer_)) | ||
task.use(OffPolicyLearner(cfg, policy.learn_mode, buffer_)) | ||
task.use(online_logger(train_show_freq=50)) | ||
task.use(CkptSaver(policy, cfg.exp_name, train_freq=1000)) | ||
task.use(termination_checker(max_env_step=int(3e6))) | ||
task.run() | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
add paper link and original github repo link to refer others' work