forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 16
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Misc] Kernel Benchmark for
RMSNorm
(vllm-project#11241)
Signed-off-by: Roger Wang <[email protected]> Co-authored-by: Xiaoyu Zhang <[email protected]>
- Loading branch information
Showing
1 changed file
with
262 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,262 @@ | ||
import itertools | ||
from typing import Optional, Tuple, Union | ||
|
||
import torch | ||
import triton | ||
from flashinfer.norm import fused_add_rmsnorm, rmsnorm | ||
from torch import nn | ||
|
||
from vllm import _custom_ops as vllm_ops | ||
|
||
|
||
class HuggingFaceRMSNorm(nn.Module): | ||
|
||
def __init__(self, hidden_size: int, eps: float = 1e-6) -> None: | ||
super().__init__() | ||
self.weight = nn.Parameter(torch.ones(hidden_size)) | ||
self.variance_epsilon = eps | ||
|
||
def forward( | ||
self, | ||
x: torch.Tensor, | ||
residual: Optional[torch.Tensor] = None, | ||
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: | ||
orig_dtype = x.dtype | ||
x = x.to(torch.float32) | ||
if residual is not None: | ||
x = x + residual.to(torch.float32) | ||
residual = x.to(orig_dtype) | ||
|
||
variance = x.pow(2).mean(dim=-1, keepdim=True) | ||
x = x * torch.rsqrt(variance + self.variance_epsilon) | ||
x = x.to(orig_dtype) * self.weight | ||
if residual is None: | ||
return x | ||
else: | ||
return x, residual | ||
|
||
|
||
def rmsnorm_naive( | ||
x: torch.Tensor, | ||
weight: torch.Tensor, | ||
residual: Optional[torch.Tensor] = None, | ||
eps: float = 1e-6, | ||
): | ||
naive_norm = HuggingFaceRMSNorm(x.shape[-1], eps=eps) | ||
naive_norm.weight = nn.Parameter(weight) | ||
naive_norm = naive_norm.to(x.device) | ||
|
||
orig_shape = x.shape | ||
x = x.view(-1, x.shape[-1]) | ||
if residual is not None: | ||
residual = residual.view(-1, residual.shape[-1]) | ||
|
||
output = naive_norm(x, residual) | ||
|
||
if isinstance(output, tuple): | ||
output = (output[0].view(orig_shape), output[1].view(orig_shape)) | ||
else: | ||
output = output.view(orig_shape) | ||
return output | ||
|
||
|
||
def rmsnorm_flashinfer( | ||
x: torch.Tensor, | ||
weight: torch.Tensor, | ||
residual: Optional[torch.Tensor] = None, | ||
eps: float = 1e-6, | ||
): | ||
orig_shape = x.shape | ||
x = x.view(-1, x.shape[-1]) | ||
if residual is not None: | ||
residual = residual.view(-1, residual.shape[-1]) | ||
|
||
if residual is not None: | ||
fused_add_rmsnorm(x, residual, weight, eps) | ||
output = (x, residual) | ||
else: | ||
output = rmsnorm(x, weight, eps) | ||
|
||
if isinstance(output, tuple): | ||
output = (output[0].view(orig_shape), output[1].view(orig_shape)) | ||
else: | ||
output = output.view(orig_shape) | ||
return output | ||
|
||
|
||
def rmsnorm_vllm( | ||
x: torch.Tensor, | ||
weight: torch.Tensor, | ||
residual: Optional[torch.Tensor] = None, | ||
eps: float = 1e-6, | ||
): | ||
orig_shape = x.shape | ||
x = x.view(-1, x.shape[-1]) | ||
if residual is not None: | ||
residual = residual.view(-1, residual.shape[-1]) | ||
|
||
if residual is not None: | ||
vllm_ops.fused_add_rms_norm(x, residual, weight, eps) | ||
output = (x, residual) | ||
else: | ||
out = torch.empty_like(x) | ||
vllm_ops.rms_norm(out, x, weight, eps) | ||
output = out | ||
|
||
if isinstance(output, tuple): | ||
output = (output[0].view(orig_shape), output[1].view(orig_shape)) | ||
else: | ||
output = output.view(orig_shape) | ||
return output | ||
|
||
|
||
def calculate_diff(batch_size, seq_len, hidden_size, use_residual=True): | ||
dtype = torch.bfloat16 | ||
x = torch.randn(batch_size, | ||
seq_len, | ||
hidden_size, | ||
dtype=dtype, | ||
device="cuda") | ||
weight = torch.ones(hidden_size, dtype=dtype, device="cuda") | ||
residual = torch.randn_like(x) if use_residual else None | ||
|
||
output_naive = rmsnorm_naive( | ||
x.clone(), weight, | ||
residual.clone() if residual is not None else None) | ||
output_flashinfer = rmsnorm_flashinfer( | ||
x.clone(), weight, | ||
residual.clone() if residual is not None else None) | ||
output_vllm = rmsnorm_vllm( | ||
x.clone(), weight, | ||
residual.clone() if residual is not None else None) | ||
|
||
if use_residual: | ||
output_naive = output_naive[0] | ||
output_flashinfer = output_flashinfer[0] | ||
output_vllm = output_vllm[0] | ||
|
||
print(f"Naive output={output_naive}") | ||
print(f"FlashInfer output={output_flashinfer}") | ||
print(f"VLLM output={output_vllm}") | ||
|
||
if torch.allclose(output_naive, output_flashinfer, atol=1e-2, | ||
rtol=1e-2) and torch.allclose( | ||
output_naive, output_vllm, atol=1e-2, rtol=1e-2): | ||
print("✅ All implementations match") | ||
else: | ||
print("❌ Implementations differ") | ||
|
||
|
||
batch_size_range = [2**i for i in range(0, 7, 2)] | ||
seq_length_range = [2**i for i in range(6, 11, 1)] | ||
head_num_range = [32, 48] | ||
configs = list( | ||
itertools.product(head_num_range, batch_size_range, seq_length_range)) | ||
|
||
|
||
def get_benchmark(use_residual): | ||
|
||
@triton.testing.perf_report( | ||
triton.testing.Benchmark( | ||
x_names=["head_num", "batch_size", "seq_len"], | ||
x_vals=[list(_) for _ in configs], | ||
line_arg="provider", | ||
line_vals=["huggingface", "flashinfer", "vllm"], | ||
line_names=["HuggingFace", "FlashInfer", "vLLM"], | ||
styles=[("blue", "-"), ("green", "-"), ("red", "-")], | ||
ylabel="us", | ||
plot_name= | ||
f"rmsnorm-perf-{'with' if use_residual else 'without'}-residual", | ||
args={}, | ||
)) | ||
def benchmark(head_num, batch_size, seq_len, provider): | ||
dtype = torch.bfloat16 | ||
hidden_size = head_num * 128 # assuming head_dim = 128 | ||
|
||
x = torch.randn(batch_size, | ||
seq_len, | ||
hidden_size, | ||
dtype=dtype, | ||
device="cuda") | ||
weight = torch.ones(hidden_size, dtype=dtype, device="cuda") | ||
residual = torch.randn_like(x) if use_residual else None | ||
|
||
quantiles = [0.5, 0.2, 0.8] | ||
|
||
if provider == "huggingface": | ||
ms, min_ms, max_ms = triton.testing.do_bench( | ||
lambda: rmsnorm_naive( | ||
x.clone(), | ||
weight, | ||
residual.clone() if residual is not None else None, | ||
), | ||
quantiles=quantiles, | ||
) | ||
elif provider == "flashinfer": | ||
ms, min_ms, max_ms = triton.testing.do_bench( | ||
lambda: rmsnorm_flashinfer( | ||
x.clone(), | ||
weight, | ||
residual.clone() if residual is not None else None, | ||
), | ||
quantiles=quantiles, | ||
) | ||
else: | ||
ms, min_ms, max_ms = triton.testing.do_bench( | ||
lambda: rmsnorm_vllm( | ||
x.clone(), | ||
weight, | ||
residual.clone() if residual is not None else None, | ||
), | ||
quantiles=quantiles, | ||
) | ||
|
||
return 1000 * ms, 1000 * max_ms, 1000 * min_ms | ||
|
||
return benchmark | ||
|
||
|
||
if __name__ == "__main__": | ||
import argparse | ||
|
||
parser = argparse.ArgumentParser() | ||
parser.add_argument( | ||
"--batch-size", | ||
type=int, | ||
default=4, | ||
help="Batch size", | ||
) | ||
parser.add_argument( | ||
"--seq-len", | ||
type=int, | ||
default=128, | ||
help="Sequence length", | ||
) | ||
parser.add_argument( | ||
"--hidden-size", | ||
type=int, | ||
default=4096, | ||
help="Hidden size (2nd dimension) of the sequence", | ||
) | ||
parser.add_argument("--use-residual", | ||
action="store_true", | ||
help="Whether to use residual connection") | ||
parser.add_argument( | ||
"--save-path", | ||
type=str, | ||
default="./configs/rmsnorm/", | ||
help="Path to save rmsnorm benchmark results", | ||
) | ||
|
||
args = parser.parse_args() | ||
|
||
# Run correctness test | ||
calculate_diff(batch_size=args.batch_size, | ||
seq_len=args.seq_len, | ||
hidden_size=args.hidden_size, | ||
use_residual=args.use_residual) | ||
|
||
# Get the benchmark function with proper use_residual setting | ||
benchmark = get_benchmark(args.use_residual) | ||
# Run performance benchmark | ||
benchmark.run(print_data=True, save_path=args.save_path) |