-
Notifications
You must be signed in to change notification settings - Fork 445
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Fengzhe Zhou
authored
May 29, 2024
1 parent
d59189b
commit a77b8a5
Showing
9 changed files
with
561 additions
and
9 deletions.
There are no files selected for viewing
58 changes: 58 additions & 0 deletions
58
configs/datasets/subjective/compassbench/compassbench_compare.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,58 @@ | ||
from opencompass.openicl.icl_prompt_template import PromptTemplate | ||
from opencompass.openicl.icl_retriever import ZeroRetriever | ||
from opencompass.openicl.icl_inferencer import GenInferencer | ||
from opencompass.openicl.icl_evaluator import LMEvaluator | ||
from opencompass.datasets import CompassBenchDataset | ||
|
||
subjective_reader_cfg = dict( | ||
input_columns=['question', 'judge_prompt'], | ||
output_column='judge', | ||
) | ||
|
||
data_path ='data/subjective/compassbench' | ||
|
||
subjective_datasets = [] | ||
|
||
versions = ['CompassbenchV1'] | ||
|
||
for version_abbr in versions: | ||
subjective_infer_cfg = dict( | ||
prompt_template=dict( | ||
type=PromptTemplate, | ||
template=dict(round=[ | ||
dict( | ||
role='HUMAN', | ||
prompt='{question}' | ||
), | ||
]), | ||
), | ||
retriever=dict(type=ZeroRetriever), | ||
inferencer=dict(type=GenInferencer, max_seq_len=4096, max_out_len=2048), | ||
) | ||
|
||
subjective_eval_cfg = dict( | ||
evaluator=dict( | ||
type=LMEvaluator, | ||
prompt_template=dict( | ||
type=PromptTemplate, | ||
template=dict(round=[ | ||
dict( | ||
role='HUMAN', | ||
prompt = '{judge_prompt}' | ||
), | ||
]), | ||
), | ||
), | ||
pred_role='BOT', | ||
) | ||
|
||
subjective_datasets.append( | ||
dict( | ||
abbr=version_abbr, | ||
type=CompassBenchDataset, | ||
path=data_path, | ||
name=version_abbr, | ||
reader_cfg=subjective_reader_cfg, | ||
infer_cfg=subjective_infer_cfg, | ||
eval_cfg=subjective_eval_cfg | ||
)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,137 @@ | ||
from os import getenv as gv | ||
from opencompass.models import HuggingFaceCausalLM | ||
from mmengine.config import read_base | ||
|
||
with read_base(): | ||
from .datasets.subjective.compassbench.compassbench_compare import subjective_datasets | ||
|
||
from opencompass.models import HuggingFaceCausalLM, HuggingFace, HuggingFaceChatGLM3, OpenAI | ||
from opencompass.partitioners import NaivePartitioner, SizePartitioner | ||
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner | ||
from opencompass.partitioners.sub_size import SubjectiveSizePartitioner | ||
from opencompass.runners import LocalRunner | ||
from opencompass.runners import SlurmSequentialRunner | ||
from opencompass.tasks import OpenICLInferTask | ||
from opencompass.tasks.subjective_eval import SubjectiveEvalTask | ||
from opencompass.summarizers import CompassBenchSummarizer | ||
|
||
api_meta_template = dict( | ||
round=[ | ||
dict(role='HUMAN', api_role='HUMAN'), | ||
dict(role='BOT', api_role='BOT', generate=True), | ||
], | ||
reserved_roles=[dict(role='SYSTEM', api_role='SYSTEM')], | ||
) | ||
|
||
# -------------Inference Stage ---------------------------------------- | ||
|
||
from opencompass.models import HuggingFacewithChatTemplate | ||
|
||
models = [ | ||
dict( | ||
type=HuggingFacewithChatTemplate, | ||
abbr='internlm2-chat-7b-hf', | ||
path='internlm/internlm2-chat-7b', | ||
max_out_len=1024, | ||
batch_size=8, | ||
run_cfg=dict(num_gpus=1), | ||
stop_words=['</s>', '<|im_end|>'], | ||
generation_kwargs=dict( | ||
do_sample=True, | ||
), | ||
) | ||
] | ||
|
||
datasets = [*subjective_datasets] | ||
|
||
infer = dict( | ||
partitioner=dict(type=NaivePartitioner), | ||
runner=dict( | ||
type=SlurmSequentialRunner, | ||
partition='llmeval', | ||
quotatype='reserved', | ||
max_num_workers=256, | ||
task=dict(type=OpenICLInferTask), | ||
), | ||
) | ||
|
||
gpt4 = dict( | ||
abbr='gpt4-turbo', | ||
type=OpenAI, | ||
path='gpt-4-1106-preview', | ||
key='', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well | ||
meta_template=api_meta_template, | ||
query_per_second=1, | ||
max_out_len=2048, | ||
max_seq_len=4096, | ||
batch_size=4, | ||
retry=20, | ||
temperature=1, | ||
) # Re-inference gpt4's predictions or you can choose to use the pre-commited gpt4's predictions | ||
|
||
# -------------Evalation Stage ---------------------------------------- | ||
|
||
## ------------- JudgeLLM Configuration | ||
judge_models = [dict( | ||
abbr='GPT4-Turbo', | ||
type=OpenAI, | ||
path='gpt-4-1106-preview', | ||
key='', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well | ||
meta_template=api_meta_template, | ||
query_per_second=1, | ||
max_out_len=1024, | ||
max_seq_len=4096, | ||
batch_size=2, | ||
retry=20, | ||
temperature=0, | ||
)] | ||
|
||
judge_models = [ | ||
dict( | ||
type=HuggingFacewithChatTemplate, | ||
abbr='internlm102b', | ||
path='/mnt/petrelfs/caomaosong/backup_hwfile/100bjudge_6w_epoch1/hf', | ||
max_out_len=1024, | ||
batch_size=8, | ||
run_cfg=dict(num_gpus=4), | ||
stop_words=['</s>', '<|im_end|>'], | ||
), | ||
dict( | ||
type=HuggingFacewithChatTemplate, | ||
abbr='internlm102b2', | ||
path='/mnt/petrelfs/caomaosong/backup_hwfile/100bjudge_6w_epoch1/hf', | ||
max_out_len=1024, | ||
batch_size=8, | ||
run_cfg=dict(num_gpus=4), | ||
stop_words=['</s>', '<|im_end|>'], | ||
), | ||
dict( | ||
type=HuggingFacewithChatTemplate, | ||
abbr='internlm102b3', | ||
path='/mnt/petrelfs/caomaosong/backup_hwfile/100bjudge_6w_epoch1/hf', | ||
max_out_len=1024, | ||
batch_size=8, | ||
run_cfg=dict(num_gpus=4), | ||
stop_words=['</s>', '<|im_end|>'], | ||
) | ||
] | ||
|
||
## ------------- Evaluation Configuration | ||
eval = dict( | ||
partitioner=dict( | ||
type=SubjectiveSizePartitioner, | ||
strategy='split', | ||
max_task_size=10000000, | ||
mode='m2n', | ||
infer_order='double', | ||
base_models=[gpt4], | ||
compare_models=models, | ||
judge_models=judge_models, | ||
), | ||
runner=dict(type=LocalRunner, max_num_workers=32, task=dict(type=SubjectiveEvalTask)), | ||
#given_pred = [{'abbr':'gpt4-turbo', 'path':''}] | ||
) | ||
|
||
work_dir = 'outputs/compassbench/' | ||
|
||
summarizer = dict(type=CompassBenchSummarizer, summary_type='half_add') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,101 @@ | ||
# flake8: noqa | ||
import json | ||
import os.path as osp | ||
|
||
from datasets import Dataset | ||
|
||
from opencompass.registry import LOAD_DATASET | ||
|
||
from ..base import BaseDataset | ||
|
||
base_prompt_zh = """请根据 用户问题 以及 相应的两个回答,判断哪一个回答更好。 | ||
[用户问题] | ||
{question} | ||
[回答1开始] | ||
{prediction} | ||
[回答1结束] | ||
[回答2开始] | ||
{prediction2} | ||
[回答2结束] | ||
根据评分要求,请先对两个回答进行评价,最后在以下 3 个选项中做出选择: | ||
A. 回答1更好 | ||
B. 回答2更好 | ||
C. 回答1、2平局 | ||
如果你认为回答1更好,你的输出应形如: | ||
评价1:回答1 xxx | ||
评价2:回答2 xxx | ||
选择:[[A]] | ||
如果你认为回答2更好,你的输出应形如: | ||
评价1:回答1 xxx | ||
评价2:回答2 xxx | ||
选择:[[B]] | ||
如果你认为回答1、2打成平手,你的输出应形如: | ||
评价1:回答1 xxx | ||
评价2:回答2 xxx | ||
选择:[[C]] | ||
""" | ||
|
||
base_prompt_en = """Please evaluate the two responses based on the user's question and then choose from the following three options: | ||
A. Response 1 is better | ||
B. Response 2 is better | ||
C. Both responses are equal | ||
[user's question] | ||
{question} | ||
[Response 1 Start] | ||
{prediction} | ||
[Response 1 End] | ||
[Response 2 Start] | ||
{prediction2} | ||
[Response 2 End] | ||
If you believe that Response 1 is better, your output should be formatted as follows: | ||
Evaluation 1: Response 1 xxx | ||
Evaluation 2: Response 2 xxx | ||
Choice: [[A]] | ||
If you believe that Response 2 is better, your output should be formatted as follows: | ||
Evaluation 1: Response 1 xxx | ||
Evaluation 2: Response 2 xxx | ||
Choice: [[B]] | ||
If you believe that both responses are equally good, your output should be formatted as follows: | ||
Evaluation 1: Response 1 xxx | ||
Evaluation 2: Response 2 xxx | ||
Choice: [[C]] | ||
""" | ||
|
||
|
||
@LOAD_DATASET.register_module() | ||
class CompassBenchDataset(BaseDataset): | ||
|
||
def load(self, path: str, name: str): | ||
filename = osp.join(path, f'{name}.json') | ||
raw_data = [] | ||
with open(filename, 'r', encoding='utf-8') as f: | ||
json_data = json.load(f) | ||
for problem in json_data: | ||
question = problem['question'] | ||
lan = problem['language'] | ||
others = problem['others'] | ||
judge_prompt = base_prompt_zh if lan == 'zh' else base_prompt_en | ||
raw_data.append({ | ||
'question': question, | ||
'judge_prompt': judge_prompt, | ||
'judge': { | ||
'lan': lan, | ||
'level': others['level'], | ||
'category': problem['category'], | ||
'question': question | ||
} | ||
}) | ||
dataset = Dataset.from_list(raw_data) | ||
return dataset |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.