Skip to content

Commit

Permalink
[layer] add pow operation layer
Browse files Browse the repository at this point in the history
added a pow operation layer.

there was an example of a pow layer in the custom layers, so I modified the key value of the custom pow layer to "custom_pow" in order to avoid duplication of layer key value.

**Self evaluation:**
1. Build test:   [X]Passed [ ]Failed [ ]Skipped
2. Run test:     [X]Passed [ ]Failed [ ]Skipped

Signed-off-by: Seungbaek Hong <[email protected]>
  • Loading branch information
baek2sm committed Nov 29, 2024
1 parent 19b3953 commit e582dd6
Show file tree
Hide file tree
Showing 20 changed files with 298 additions and 17 deletions.
2 changes: 1 addition & 1 deletion Applications/Custom/LayerClient/jni/main.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -151,7 +151,7 @@ int api_model_run() {
/// creating array of layers same as in `custom_layer_client.ini`
layers = std::vector<std::shared_ptr<ml::train::Layer>>{
ml::train::layer::Input({"name=inputlayer", "input_shape=1:1:100"}),
ml::train::createLayer("pow", {"name=powlayer", "exponent=3"}),
ml::train::createLayer("custom_pow", {"name=powlayer", "exponent=3"}),
ml::train::layer::FullyConnected(
{"name=outputlayer", "input_layers=powlayer", "unit=10",
"bias_initializer=zeros", "activation=softmax"}),
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@ Input_Shape = 1:1:100

[powlayer]
input_layers = inputlayer
Type = pow # AppContext sees PowLayer::getType() and use this to parse type
Type = custom_pow # AppContext sees PowLayer::getType() and use this to parse type
exponent = 3 # registering a custom property is done at int PowLayer::setProperty

[outputlayer]
Expand Down
2 changes: 1 addition & 1 deletion Applications/Custom/LayerPlugin/layer_plugin_pow_test.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@

GTEST_PARAMETER_TEST(PowLayer, LayerPluginCommonTest,
::testing::Values(std::make_tuple("libpow_layer.so",
"pow")));
"custom_pow")));

auto semantic_pow =
LayerSemanticsParamType(nntrainer::createLayer<custom::PowLayer>,
Expand Down
12 changes: 6 additions & 6 deletions Applications/Custom/LayerPlugin/layer_plugin_test.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -29,9 +29,9 @@ TEST(AppContext, DlRegisterOpen_p) {

ac.registerLayer("libpow_layer.so", NNTRAINER_PATH);

auto layer = ac.createObject<nntrainer::Layer>("pow");
auto layer = ac.createObject<nntrainer::Layer>("custom_pow");

EXPECT_EQ(layer->getType(), "pow");
EXPECT_EQ(layer->getType(), "custom_pow");
}

TEST(AppContext, DlRegisterWrongPath_n) {
Expand All @@ -49,9 +49,9 @@ TEST(AppContext, DlRegisterDirectory_p) {

ac.registerPluggableFromDirectory(NNTRAINER_PATH);

auto layer = ac.createObject<nntrainer::Layer>("pow");
auto layer = ac.createObject<nntrainer::Layer>("custom_pow");

EXPECT_EQ(layer->getType(), "pow");
EXPECT_EQ(layer->getType(), "custom_pow");
}

TEST(AppContext, DlRegisterDirectory_n) {
Expand All @@ -64,8 +64,8 @@ TEST(AppContext, DlRegisterDirectory_n) {
TEST(AppContext, DefaultEnvironmentPath_p) {
/// as NNTRAINER_PATH is fed to the test, this should success without an
/// error
std::shared_ptr<ml::train::Layer> l = ml::train::createLayer("pow");
EXPECT_EQ(l->getType(), "pow");
std::shared_ptr<ml::train::Layer> l = ml::train::createLayer("custom_pow");
EXPECT_EQ(l->getType(), "custom_pow");
std::shared_ptr<nntrainer::LayerNode> lnode =
std::static_pointer_cast<nntrainer::LayerNode>(l);

Expand Down
2 changes: 1 addition & 1 deletion Applications/Custom/pow.h
Original file line number Diff line number Diff line change
Expand Up @@ -77,7 +77,7 @@ class PowLayer final : public nntrainer::Layer {
*/
void setProperty(const std::vector<std::string> &values) override;

inline static const std::string type = "pow";
inline static const std::string type = "custom_pow";

private:
float exponent;
Expand Down
9 changes: 9 additions & 0 deletions api/ccapi/include/layer.h
Original file line number Diff line number Diff line change
Expand Up @@ -41,6 +41,7 @@ enum LayerType {
LAYER_SUBTRACT = ML_TRAIN_LAYER_TYPE_SUBTRACT, /**< Subtract Layer type */
LAYER_MULTIPLY = ML_TRAIN_LAYER_TYPE_MULTIPLY, /**< Multiply Layer type */
LAYER_DIVIDE = ML_TRAIN_LAYER_TYPE_DIVIDE, /**< Divide Layer type */
LAYER_POW = ML_TRAIN_LAYER_TYPE_POW, /**< Pow Layer type */
LAYER_FC = ML_TRAIN_LAYER_TYPE_FC, /**< Fully Connected Layer type */
LAYER_SWIGLU = ML_TRAIN_LAYER_TYPE_SWIGLU, /**< Swiglu Layer type */
LAYER_BN = ML_TRAIN_LAYER_TYPE_BN, /**< Batch Normalization Layer type */
Expand Down Expand Up @@ -337,6 +338,14 @@ DivideLayer(const std::vector<std::string> &properties = {}) {
return createLayer(LayerType::LAYER_DIVIDE, properties);
}

/**
* @brief Helper function to create pow layer
*/
inline std::unique_ptr<Layer>
PowLayer(const std::vector<std::string> &properties = {}) {
return createLayer(LayerType::LAYER_POW, properties);
}

/**
* @brief Helper function to create fully connected layer
*/
Expand Down
15 changes: 8 additions & 7 deletions api/nntrainer-api-common.h
Original file line number Diff line number Diff line change
Expand Up @@ -62,14 +62,15 @@ typedef enum {
27, /**< Layer Normalization Layer type (Since 7.0) */
ML_TRAIN_LAYER_TYPE_POSITIONAL_ENCODING =
28, /**< Positional Encoding Layer type (Since 7.0) */
ML_TRAIN_LAYER_TYPE_IDENTITY = 29, /**< Identity Layer type (Since 8.0) */
ML_TRAIN_LAYER_TYPE_SWIGLU = 30, /**< Swiglu Layer type */
ML_TRAIN_LAYER_TYPE_WEIGHT = 31, /**< Weight Layer type (Since 9.0)*/
ML_TRAIN_LAYER_TYPE_ADD = 32, /**< Add Layer type (Since 9.0)*/
ML_TRAIN_LAYER_TYPE_SUBTRACT = 33, /**< Subtract Layer type (Since 9.0)*/
ML_TRAIN_LAYER_TYPE_MULTIPLY = 34, /**< Multiply Layer type (Since 9.0)*/
ML_TRAIN_LAYER_TYPE_DIVIDE = 35, /**< Divide Layer type (Since 9.0)*/
ML_TRAIN_LAYER_TYPE_IDENTITY = 29, /**< Identity Layer type (Since 8.0) */
ML_TRAIN_LAYER_TYPE_SWIGLU = 30, /**< Swiglu Layer type */
ML_TRAIN_LAYER_TYPE_WEIGHT = 31, /**< Weight Layer type (Since 9.0)*/
ML_TRAIN_LAYER_TYPE_ADD = 32, /**< Add Layer type (Since 9.0)*/
ML_TRAIN_LAYER_TYPE_SUBTRACT = 33, /**< Subtract Layer type (Since 9.0)*/
ML_TRAIN_LAYER_TYPE_MULTIPLY = 34, /**< Multiply Layer type (Since 9.0)*/
ML_TRAIN_LAYER_TYPE_DIVIDE = 35, /**< Divide Layer type (Since 9.0)*/
ML_TRAIN_LAYER_TYPE_TRANSPOSE = 36, /**< Transpose Layer type */
ML_TRAIN_LAYER_TYPE_POW = 37, /**< Pow Layer type (Since 9.0)*/
ML_TRAIN_LAYER_TYPE_PREPROCESS_FLIP =
300, /**< Preprocess flip Layer (Since 6.5) */
ML_TRAIN_LAYER_TYPE_PREPROCESS_TRANSLATE =
Expand Down
3 changes: 3 additions & 0 deletions nntrainer/app_context.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -70,6 +70,7 @@
#include <plugged_optimizer.h>
#include <pooling2d_layer.h>
#include <positional_encoding_layer.h>
#include <pow_layer.h>
#include <preprocess_flip_layer.h>
#include <preprocess_l2norm_layer.h>
#include <preprocess_translate_layer.h>
Expand Down Expand Up @@ -269,6 +270,8 @@ static void add_default_object(AppContext &ac) {
LayerType::LAYER_MULTIPLY);
ac.registerFactory(nntrainer::createLayer<DivideLayer>, DivideLayer::type,
LayerType::LAYER_DIVIDE);
ac.registerFactory(nntrainer::createLayer<PowLayer>, PowLayer::type,
LayerType::LAYER_POW);
ac.registerFactory(nntrainer::createLayer<FullyConnectedLayer>,
FullyConnectedLayer::type, LayerType::LAYER_FC);
ac.registerFactory(nntrainer::createLayer<BatchNormalizationLayer>,
Expand Down
2 changes: 2 additions & 0 deletions nntrainer/layers/common_properties.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -88,6 +88,8 @@ InputConnection::InputConnection(const Connection &value) :

Epsilon::Epsilon(float value) { set(value); }

Exponent::Exponent(float value) { set(value); }

bool Epsilon::isValid(const float &value) const { return value > 0.0f; }

Momentum::Momentum(float value) { set(value); }
Expand Down
16 changes: 16 additions & 0 deletions nntrainer/layers/common_properties.h
Original file line number Diff line number Diff line change
Expand Up @@ -280,6 +280,22 @@ class Epsilon : public nntrainer::Property<float> {
bool isValid(const float &value) const override;
};

/**
* @brief Exponent property, this is used for pow operation
*
*/
class Exponent : public nntrainer::Property<float> {

public:
/**
* @brief Construct a new Exponent object
*
*/
Exponent(float value = 1.0f);
static constexpr const char *key = "exponent"; /**< unique key to access */
using prop_tag = float_prop_tag; /**< property type */
};

/**
* @brief Momentum property, moving average in batch normalization layer
*
Expand Down
1 change: 1 addition & 0 deletions nntrainer/layers/meson.build
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@ layer_sources = [
'subtract_layer.cpp',
'multiply_layer.cpp',
'divide_layer.cpp',
'pow_layer.cpp',
'addition_layer.cpp',
'attention_layer.cpp',
'mol_attention_layer.cpp',
Expand Down
50 changes: 50 additions & 0 deletions nntrainer/layers/pow_layer.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,50 @@
// SPDX-License-Identifier: Apache-2.0
/**
* Copyright (C) 2024 SeungBaek Hong <[email protected]>
*
* @file pow_layer.cpp
* @date 20 Nov 2024
* @see https://github.com/nnstreamer/nntrainer
* @author SeungBaek Hong <[email protected]>
* @bug No known bugs except for NYI items
* @brief This is pow layer class (operation layer)
*
*/

#include "common_properties.h"
#include <nntrainer_error.h>
#include <nntrainer_log.h>
#include <node_exporter.h>
#include <pow_layer.h>
#include <util_func.h>

#include <layer_context.h>

namespace nntrainer {

void PowLayer::finalize(InitLayerContext &context) {
context.setOutputDimensions({context.getInputDimensions()[0]});
}

void PowLayer::forwarding_operation(const Tensor &input, Tensor &hidden) {
float exp = std::get<props::Exponent>(pow_props).get();
input.pow(exp, hidden);
}

void PowLayer::calcDerivative(RunLayerContext &context) {
float exp = std::get<props::Exponent>(pow_props).get();
context.getOutgoingDerivative(0).copy(
context.getIncomingDerivative(SINGLE_INOUT_IDX)
.multiply(exp)
.multiply(context.getInput(0).pow(exp - 1.0f)));
}

void PowLayer::setProperty(const std::vector<std::string> &values) {
auto remain_props = loadProperties(values, pow_props);
if (!remain_props.empty()) {
std::string msg = "[PowLayer] Unknown Layer Properties count " +
std::to_string(values.size());
throw exception::not_supported(msg);
}
}
} /* namespace nntrainer */
124 changes: 124 additions & 0 deletions nntrainer/layers/pow_layer.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,124 @@
// SPDX-License-Identifier: Apache-2.0
/**
* Copyright (C) 2024 SeungBaek Hong <[email protected]>
*
* @file pow_layer.h
* @date 20 Nov 2024
* @see https://github.com/nnstreamer/nntrainer
* @author SeungBaek Hong <[email protected]>
* @bug No known bugs except for NYI items
* @brief This is pow layer class (operation layer)
*
*/

#ifndef __POW_LAYER_H__
#define __POW_LAYER_H__
#ifdef __cplusplus

#include <common_properties.h>
#include <layer_devel.h>
#include <operation_layer.h>

namespace nntrainer {

/**
* @class Pow Layer
* @brief Pow Layer
*/
class PowLayer : public UnaryOperationLayer {
public:
/**
* @brief Constructor of Pow Layer
*/
PowLayer() :
UnaryOperationLayer(),
pow_props(props::Print(), props::InPlaceProp(), props::Exponent()),
support_backwarding(true) {}

/**
* @brief Destructor of Pow Layer
*/
~PowLayer(){};

/**
* @brief Move constructor of Pow Layer.
* @param[in] PowLayer &&
*/
PowLayer(PowLayer &&rhs) noexcept = default;

/**
* @brief Move assignment operator.
* @parma[in] rhs PowLayer to be moved.
*/
PowLayer &operator=(PowLayer &&rhs) = default;

/**
* @copydoc Layer::finalize(InitLayerContext &context)
*/
void finalize(InitLayerContext &context) final;

/**
* @brief forwarding operation for pow
*
* @param input input tensor
* @param hidden tensor to store the result value
*/
void forwarding_operation(const Tensor &input, Tensor &hidden) final;

/**
* @copydoc Layer::calcDerivative(RunLayerContext &context)
*/
void calcDerivative(RunLayerContext &context) final;

/**
* @copydoc bool supportBackwarding() const
*/
bool supportBackwarding() const final { return support_backwarding; };

/**
* @brief Initialize the in-place settings of the layer
* @return InPlaceType
*/
InPlaceType initializeInPlace() final {
if (std::get<props::InPlaceProp>(pow_props).empty() ||
!std::get<props::InPlaceProp>(pow_props).get()) {
is_inplace = false;
support_backwarding = true;
} else {
is_inplace = true;
support_backwarding = false;
}

if (!supportInPlace())
return InPlaceType::NONE;
else
return InPlaceType::NON_RESTRICTING;
}

/**
* @copydoc Layer::exportTo(Exporter &exporter, ml::train::ExportMethods
* method)
*/
void exportTo(Exporter &exporter,
const ml::train::ExportMethods &method) const final {}

/**
* @copydoc Layer::setProperty(const std::vector<std::string> &values)
*/
void setProperty(const std::vector<std::string> &values) final;

/**
* @copydoc Layer::getType()
*/
const std::string getType() const final { return PowLayer::type; };

std::tuple<props::Print, props::InPlaceProp, props::Exponent> pow_props;
bool support_backwarding; /**< support backwarding */

inline static const std::string type = "pow";
};

} // namespace nntrainer

#endif /* __cplusplus */
#endif /* __POW_LAYER_H__ */
1 change: 1 addition & 0 deletions nntrainer/utils/node_exporter.h
Original file line number Diff line number Diff line change
Expand Up @@ -237,6 +237,7 @@ class Packed;
class LossScaleForMixed;
class InPlaceProp;
class InPlaceDirectionProp;
class Exponent;
} // namespace props

class LayerNode;
Expand Down
Binary file modified packaging/unittest_models_v2.tar.gz
Binary file not shown.
23 changes: 23 additions & 0 deletions test/input_gen/genModelTests_v2.py
Original file line number Diff line number Diff line change
Expand Up @@ -518,6 +518,19 @@ def forward(self, inputs, labels):
return out, loss


class PowOperation(torch.nn.Module):
def __init__(self):
super().__init__()
self.fc = torch.nn.Linear(2, 2)
self.loss = torch.nn.MSELoss()

def forward(self, inputs, labels):
out = self.fc(inputs[0])
out = out.pow(3)
loss = self.loss(out, labels[0])
return out, loss


if __name__ == "__main__":
record_v2(
ReduceMeanLast(),
Expand Down Expand Up @@ -836,6 +849,16 @@ def forward(self, inputs, labels):
name="multiply_operation",
)

pow_operation = PowOperation()
record_v2(
pow_operation,
iteration=2,
input_dims=[(1, 2)],
input_dtype=[float],
label_dims=[(1, 2)],
name="pow_operation",
)

# Function to check the created golden test file
inspect_file("add_operation.nnmodelgolden")
fc_mixed_training_nan_sgd = LinearMixedPrecisionNaNSGD()
Expand Down
Binary file added test/input_gen/golden/unittest_models_v2.tar.gz
Binary file not shown.
Loading

0 comments on commit e582dd6

Please sign in to comment.