Skip to content

Commit

Permalink
[Graph] rename variable and remove non-working codes
Browse files Browse the repository at this point in the history
- The variables with the same meaning are written as "in_place" or "is_inplace" by the script, so I unified it to use the term "is_inplace".

- Some layer's finalize function includes code that determines whether or not to support in-place depending on the tensor type. However, this code does not work. The reason it seems like this code is working is because there is a similar purpose of code at the top of the `canExecuteInPlace` function within the `network_graph.cpp` and that code works.

It is meaningless to determine whether or not to support in-place within the `finalize` function because the `canExecuteInPlace` function, which decides how InPlace will behave, is called before the `finalize` function.

 The canExecuteInPlace function is called during `compile` while the finalize function is called during `initialize` after `compile`. Therefore, setting supportInplace inside the finalize function does not work.

**Self evaluation:**
1. Build test:   [X]Passed [ ]Failed [ ]Skipped
2. Run test:     [X]Passed [ ]Failed [ ]Skipped

Signed-off-by: Seungbaek Hong <[email protected]>
  • Loading branch information
baek2sm authored and jijoongmoon committed Nov 22, 2024
1 parent 2c34be6 commit b193afd
Show file tree
Hide file tree
Showing 7 changed files with 33 additions and 46 deletions.
24 changes: 12 additions & 12 deletions nntrainer/layers/acti_func.h
Original file line number Diff line number Diff line change
Expand Up @@ -37,8 +37,8 @@ class ActiFunc {
*/
template <typename T = float>
ActiFunc(ActivationType at = ActivationType::ACT_NONE,
bool in_place_ = true) :
in_place(in_place_) {
bool is_inplace_ = true) :
is_inplace(is_inplace_) {
setActiFunc<T>(at);
}

Expand Down Expand Up @@ -72,19 +72,19 @@ class ActiFunc {
this->setActivation<T>(leakyRelu<T>, leakyReluPrime<T>);
break;
case ActivationType::ACT_SWISH:
in_place = false;
is_inplace = false;
this->setActivation<Tensor>(swish<T>, swishPrime<T>);
break;
case ActivationType::ACT_GELU:
in_place = false;
is_inplace = false;
this->setActivation<Tensor>(gelu<T>, geluPrime<T>);
break;
case ActivationType::ACT_TANH_GELU:
in_place = false;
is_inplace = false;
this->setActivation<Tensor>(tanhGelu<T>, tanhGeluPrime<T>);
break;
case ActivationType::ACT_SIGMOID_GELU:
in_place = false;
is_inplace = false;
this->setActivation<Tensor>(sigmoidGelu<T>, sigmoidGeluPrime<T>);
break;
case ActivationType::ACT_ELU:
Expand Down Expand Up @@ -149,7 +149,7 @@ class ActiFunc {
/**
* @copydoc Layer::supportInPlace()
*/
bool supportInPlace() const { return in_place; }
bool supportInPlace() const { return is_inplace; }

/**
* @brief Calculate softmax for Tensor Type
Expand Down Expand Up @@ -649,7 +649,7 @@ class ActiFunc {
&activation_fn,
std::function<funcParam &(funcParam const &, funcParam const &, funcParam &,
funcParam const &)> const &activation_prime_fn) {
if (in_place)
if (is_inplace)
return ML_ERROR_INVALID_PARAMETER;

_act_fn = activation_fn;
Expand All @@ -672,7 +672,7 @@ class ActiFunc {
&activation_fn,
std::function<funcParam &(funcParam &, funcParam &)> const
&activation_prime_fn) {
if (!in_place) {
if (!is_inplace) {
_act_prime_fn = [activation_prime_fn](
funcParam const &t_in, funcParam &t_out,
funcParam &outgoing_derivative,
Expand Down Expand Up @@ -715,7 +715,7 @@ class ActiFunc {
_act_fn = [activation_fn](Tensor const &x, Tensor &hidden) -> Tensor & {
return x.apply(activation_fn, hidden);
};
if (!in_place) {
if (!is_inplace) {
_act_prime_fn =
[activation_prime_fn](Tensor const &t_in, Tensor &t_out,
Tensor &outgoing_derivative,
Expand Down Expand Up @@ -765,7 +765,7 @@ class ActiFunc {
throw std::runtime_error(
"Error setting activation layer to work in-place");

in_place = val;
is_inplace = val;
}

private:
Expand All @@ -780,7 +780,7 @@ class ActiFunc {

ActivationType
activation_type; /**< type of the activation represented by this */
bool in_place; /**< if this class should operate in_place */
bool is_inplace; /**< if this class should operate is_inplace */
};

} // namespace nntrainer
Expand Down
11 changes: 0 additions & 11 deletions nntrainer/layers/input_layer.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -75,17 +75,6 @@ void InputLayer::finalize(InitLayerContext &context) {
}

context.setOutputDimensions(output_dims);

is_inplace = true;

/**
* @note Input Layer assuems that the FP32 IN Tensor always. Therefore, if the
* activation data type is not fp32, then it does not support in-place
* operation.
*/
if (context.getActivationDataType() != ml::train::TensorDim::DataType::FP32) {
is_inplace = false;
}
}

} /* namespace nntrainer */
2 changes: 1 addition & 1 deletion nntrainer/layers/input_layer.h
Original file line number Diff line number Diff line change
Expand Up @@ -105,7 +105,7 @@ class InputLayer : public Layer {

private:
std::tuple<props::Normalization, props::Standardization> input_props;
bool is_inplace;
bool is_inplace = true;
};
} // namespace nntrainer

Expand Down
8 changes: 4 additions & 4 deletions nntrainer/layers/layer_context.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -41,11 +41,11 @@ static void suffixSpec(VarGradSpecV2 &spec, unsigned int idx) {

InitLayerContext::InitLayerContext(
const std::vector<TensorDim> &dim, const std::vector<bool> &req_out_connected,
bool in_place_, const std::string &n, const std::string &prefix_,
bool is_inplace_, const std::string &n, const std::string &prefix_,
const float max_norm, std::array<std::string, 3> tensor_type_,
const float loss_scale_, ml::train::ExecutionMode mode_) :
input_dim(dim),
in_place(in_place_),
is_inplace(is_inplace_),
clip_by_global_norm(max_norm),
output_specs(),
req_out_is_connected(req_out_connected),
Expand Down Expand Up @@ -126,13 +126,13 @@ const std::vector<VarGradSpecV2> &InitLayerContext::getOutSpecs() const {
}

RunLayerContext::RunLayerContext(const std::string &name, bool trainable,
float l, bool in_place_, float loss_scale_,
float l, bool is_inplace_, float loss_scale_,
bool restore_, const std::vector<Weight *> &w,
const std::vector<Var_Grad *> &in,
const std::vector<Var_Grad *> &out,
const std::vector<Var_Grad *> &t) :
loss(l),
in_place(in_place_),
is_inplace(is_inplace_),
loss_scale(loss_scale_),
restoreData(restore_),
weights(w),
Expand Down
28 changes: 15 additions & 13 deletions nntrainer/layers/layer_context.h
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,7 @@ class InitLayerContext {
* @param dim Input dimensions for the layer
* @param req_out_connected bool vector to tell if requested output is
* trainable or not
* @param in_place_ true if the context is inplacable
* @param is_inplace_ true if the context is inplacable
* @param name name
* @param prefix_ prefix
* @param max_norm max norm
Expand All @@ -57,7 +57,7 @@ class InitLayerContext {
*/
InitLayerContext(
const std::vector<TensorDim> &dim,
const std::vector<bool> &req_out_connected, bool in_place_,
const std::vector<bool> &req_out_connected, bool is_inplace_,
const std::string &n = "", const std::string &prefix_ = "",
const float max_norm = 0.0,
std::array<std::string, 3> tensor_type_ = {"NCHW", "FP32", "FP32"},
Expand Down Expand Up @@ -383,7 +383,7 @@ class InitLayerContext {
*
* @return true if in-place, else false
*/
bool getInPlace() const { return in_place; }
bool getInPlace() const { return is_inplace; }

/**
* @brief get Initial value of Loss_Scale. This is set to RunLayerContext
Expand All @@ -403,7 +403,7 @@ class InitLayerContext {

private:
std::vector<TensorDim> input_dim; /**< Input dimensions for the layer */
bool in_place; /**< if the layer is expected to run in-place */
bool is_inplace; /**< if the layer is expected to run in-place */
float clip_by_global_norm; /**< max norm value for clip by norm */

std::vector<VarGradSpecV2> output_specs; /**< Specification for the output */
Expand Down Expand Up @@ -440,24 +440,26 @@ class RunLayerContext {
*
*/
RunLayerContext() :
loss(0.0), in_place(false), loss_scale(1.0), restoreData(false) {}
loss(0.0), is_inplace(false), loss_scale(1.0), restoreData(false) {}

/**
* @brief Construct a new Run Layer Context object
*
*/
RunLayerContext(const std::string &name, bool in_place_) : RunLayerContext() {
in_place = in_place_;
RunLayerContext(const std::string &name, bool is_inplace_) :
RunLayerContext() {
is_inplace = is_inplace_;
std::get<props::Name>(props).set(name);
}

/**
* @brief Construct a new Run Layer Context object
*
*/
RunLayerContext(const std::string &name, bool in_place_, float loss_scale_) :
RunLayerContext(const std::string &name, bool is_inplace_,
float loss_scale_) :
RunLayerContext() {
in_place = in_place_;
is_inplace = is_inplace_;
std::get<props::Name>(props).set(name);
loss_scale = loss_scale_;
}
Expand All @@ -468,15 +470,15 @@ class RunLayerContext {
* @param name name of the layer
* @param trainable if the layer is trainable
* @param l loss of the layer
* @param in_place_ execution in-place of the layer
* @param is_inplace_ execution in-place of the layer
* @param loss_scale loss_scale of the layer
* @param w weights of the layer
* @param in inputs of the layer
* @param out outputs of the layer
* @param t extra tensors of the layer
*/
RunLayerContext(const std::string &name, bool trainable, float l,
bool in_place_, float loss_scale_, bool restoreData_,
bool is_inplace_, float loss_scale_, bool restoreData_,
const std::vector<Weight *> &w,
const std::vector<Var_Grad *> &in,
const std::vector<Var_Grad *> &out,
Expand Down Expand Up @@ -889,7 +891,7 @@ class RunLayerContext {
*
* @return true if in-place, else false
*/
bool getInPlace() const { return in_place; }
bool getInPlace() const { return is_inplace; }

/**
* @brief get layer weights
Expand Down Expand Up @@ -946,7 +948,7 @@ class RunLayerContext {
private:
std::tuple<props::Name, props::Trainable> props; /**< props of the layer */
float loss; /**< loss of the layer */
bool in_place; /**< if the layer is expected to run in-place */
bool is_inplace; /**< if the layer is expected to run in-place */
float loss_scale; /**< loss_scale of the layer */
bool restoreData; /**< reset output for mixed precsion */

Expand Down
4 changes: 0 additions & 4 deletions nntrainer/layers/loss/loss_layer.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -25,10 +25,6 @@ void LossLayer::finalize(InitLayerContext &context) {
nntrainer::TensorDataTypeInfo>::from_string("FP32"));

context.setOutputDimensions(output_dim);

is_inplace = true;
if (context.getActivationDataType() != ml::train::TensorDim::DataType::FP32)
is_inplace = false;
}

void LossLayer::updateLoss(RunLayerContext &context, const Tensor &l) {
Expand Down
2 changes: 1 addition & 1 deletion nntrainer/layers/loss/loss_layer.h
Original file line number Diff line number Diff line change
Expand Up @@ -72,7 +72,7 @@ class LossLayer : public Layer {
Tensor
l; /**< loss tensor to store intermediate value to calculate loss value */

bool is_inplace;
bool is_inplace = true;
};

} // namespace nntrainer
Expand Down

0 comments on commit b193afd

Please sign in to comment.