Skip to content

Commit

Permalink
[GPU/OpenCL] Initial version of Reshape Layer with OpenCL ops
Browse files Browse the repository at this point in the history
Added naive version of OpenCL implementation for Reshape Layer.
Incorporated kernel for ops used.
Added unit test for Reshape_layer_cl.

Signed-off-by: Niket Agarwal <[email protected]>
  • Loading branch information
niket-agarwal authored and jijoongmoon committed Jul 3, 2024
1 parent 6f98e73 commit 46400ac
Show file tree
Hide file tree
Showing 10 changed files with 544 additions and 6 deletions.
11 changes: 6 additions & 5 deletions api/ccapi/include/layer.h
Original file line number Diff line number Diff line change
Expand Up @@ -359,16 +359,17 @@ Flatten(const std::vector<std::string> &properties = {}) {
* @brief Helper function to create reshape layer
*/
inline std::unique_ptr<Layer>
Reshape(const std::vector<std::string> &properties = {}) {
return createLayer(LayerType::LAYER_RESHAPE, properties);
Reshape(const std::vector<std::string> &properties = {},
const LayerComputeEngine &compute_engine = LayerComputeEngine::CPU) {
return createLayer(LayerType::LAYER_RESHAPE, properties, compute_engine);
}

/**
* @brief Helper function to create addition layer
*/
inline std::unique_ptr<Layer> Addition(
const std::vector<std::string> &properties = {},
const LayerComputeEngine &compute_engine = LayerComputeEngine::CPU) {
inline std::unique_ptr<Layer>
Addition(const std::vector<std::string> &properties = {},
const LayerComputeEngine &compute_engine = LayerComputeEngine::CPU) {
return createLayer(LayerType::LAYER_ADDITION, properties, compute_engine);
}

Expand Down
6 changes: 5 additions & 1 deletion nntrainer/cl_context.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@
* @date 23 Feb 2024
* @see https://github.com/nnstreamer/nntrainer
* @author Debadri Samaddar <[email protected]>
* @author Niket Agarwal <[email protected]>
* @author Niket Agarwal <[email protected]>
* @bug No known bugs except for NYI items
* @brief This file contains app context related functions and classes that
* manages the global configuration of the current OpenCL environment. It also
Expand All @@ -16,6 +16,7 @@
#include <addition_layer_cl.h>
#include <cl_context.h>
#include <fc_layer_cl.h>
#include <reshape_cl.h>
#include <swiglu_cl.h>

namespace nntrainer {
Expand All @@ -36,6 +37,9 @@ static void add_default_object(ClContext &cc) {

cc.registerFactory(nntrainer::createLayer<SwiGLULayerCl>, SwiGLULayerCl::type,
ml::train::LayerType::LAYER_SWIGLU);

cc.registerFactory(nntrainer::createLayer<ReshapeLayerCl>,
ReshapeLayerCl::type, ml::train::LayerType::LAYER_RESHAPE);
}

static void registerer(ClContext &cc) noexcept {
Expand Down
1 change: 1 addition & 0 deletions nntrainer/layers/cl_layers/meson.build
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@ cl_layer_sources = [
'fc_layer_cl.cpp',
'addition_layer_cl.cpp',
'swiglu_cl.cpp',
'reshape_cl.cpp',
]

foreach s : cl_layer_sources
Expand Down
325 changes: 325 additions & 0 deletions nntrainer/layers/cl_layers/reshape_cl.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,325 @@
// SPDX-License-Identifier: Apache-2.0
/**
* Copyright (C) 2024 Niket Agarwal <[email protected]>
*
* @file reshape_cl.cpp
* @date 18 June 2024
* @see https://github.com/nnstreamer/nntrainer
* @author Niket Agarwal <[email protected]>
* @bug No known bugs except for NYI items
* @brief This is Reshape GPU Layer Implementation
*/

#include <iostream>
#include <layer_context.h>
#include <nntrainer_error.h>
#include <nntrainer_log.h>
#include <node_exporter.h>
#include <reshape_cl.h>

std::string copy_cl_kernel_fp16_ =
R"(
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
__kernel void copy_cl_fp16(__global const half* input,
__global half* output,
const int batchsize,
const int channels,
const int height,
const int width) {
int i= get_global_id(0);
output[i] = input[i];
})";

std::string copy_cl_kernel_ =
R"(__kernel void copy_cl(__global const float* input,
__global float* output,
const int batchsize,
const int channels,
const int height,
const int width) {
int i= get_global_id(0);
output[i] = input[i];
})";

namespace nntrainer {

static constexpr size_t SINGLE_INOUT_IDX = 0;

void ReshapeLayerCl::finalize(InitLayerContext &context) {
NNTR_THROW_IF(context.getNumInputs() != 1, std::invalid_argument)
<< "Reshape only supports 1 input for now";

const TensorDim &in_dim = context.getInputDimensions()[0];

auto &target_shape = std::get<props::TargetShape>(reshape_props);
NNTR_THROW_IF(target_shape.empty(), std::invalid_argument)
<< "Reshape layer must be provided with target shape";
TensorDim out_dim = target_shape.get();

if ((int)out_dim.getDataLen() == -1) {
out_dim.height(1);
out_dim.channel(1);
out_dim.width(in_dim.getFeatureLen());
} else if (out_dim.getFeatureLen() != in_dim.getFeatureLen()) {
throw std::invalid_argument(
"Target and input size mismatch for reshape layer");
}

out_dim.batch(in_dim.batch());

context.setOutputDimensions({out_dim});
}

void ReshapeLayerCl::forwarding(RunLayerContext &context, bool training) {
if (!context.executeInPlace()) {
Tensor &output = context.getOutput(SINGLE_INOUT_IDX);
const Tensor &input = context.getInput(SINGLE_INOUT_IDX);
ReshapeProcess(input, output, context);
}
}

void ReshapeLayerCl::incremental_forwarding(RunLayerContext &context,
unsigned int from, unsigned int to,
bool training) {
if (!context.executeInPlace()) {
Tensor &output = context.getOutput(SINGLE_INOUT_IDX);
const Tensor &input = context.getInput(SINGLE_INOUT_IDX);
if (from) {
NNTR_THROW_IF(to - from != 1, std::invalid_argument)
<< "incremental step size is not 1";
from = 0;
to = 1;
}
ReshapeProcess(input, output, context);
}
}

opencl::Kernel ReshapeLayerCl::kernel_copy;
opencl::Kernel ReshapeLayerCl::kernel_copy_fp16;

void ReshapeLayerCl::ReshapeProcess(Tensor const &input, Tensor &output,
RunLayerContext &context) {

unsigned int input_batch_size, input_height, input_width, input_channels;

input_batch_size = input.batch();
input_height = input.height();
input_width = input.width();
input_channels = input.channel();

if (input.getDataType() == ml::train::TensorDim::DataType::FP32) {
const float *data = input.getData();
float *rdata = output.getData();
copy_cl(data, rdata, input_batch_size, input_channels, input_height,
input_width, context);
} else if (input.getDataType() == ml::train::TensorDim::DataType::FP16) {
#ifdef ENABLE_FP16
const _FP16 *data = input.getData<_FP16>();
_FP16 *rdata = output.getData<_FP16>();
copy_cl_fp16(data, rdata, input_batch_size, input_channels, input_height,
input_width, context);
#else
throw std::invalid_argument("Error: enable-fp16 is not enabled");
#endif
}
}

void ReshapeLayerCl::copy_cl(const float *input, float *res,
unsigned int input_batch_size,
unsigned int input_channels,
unsigned int input_height,
unsigned int input_width,
RunLayerContext &context) {

bool result = false;

do {
result = context.clCreateKernel(copy_cl_kernel_, context.LayerKernel::COPY,
ReshapeLayerCl::kernel_copy);
if (!result) {
break;
}

size_t dim_size = sizeof(float) * input_batch_size * input_height *
input_width * input_channels;

opencl::Buffer inputA(context.context_inst_, dim_size, true, nullptr);

opencl::Buffer inOutRes(context.context_inst_, dim_size, true, nullptr);

result = inputA.WriteData(context.command_queue_inst_, input);
if (!result) {
break;
}

result = inOutRes.WriteData(context.command_queue_inst_, res);
if (!result) {
break;
}

result = ReshapeLayerCl::kernel_copy.SetKernelArguments(0, &inputA,
sizeof(cl_mem));
if (!result) {
break;
}

result = ReshapeLayerCl::kernel_copy.SetKernelArguments(1, &inOutRes,
sizeof(cl_mem));
if (!result) {
break;
}

result = ReshapeLayerCl::kernel_copy.SetKernelArguments(
2, &input_batch_size, sizeof(int));
if (!result) {
break;
}

result = ReshapeLayerCl::kernel_copy.SetKernelArguments(3, &input_channels,
sizeof(int));
if (!result) {
break;
}

result = ReshapeLayerCl::kernel_copy.SetKernelArguments(4, &input_height,
sizeof(int));
if (!result) {
break;
}

result = ReshapeLayerCl::kernel_copy.SetKernelArguments(5, &input_width,
sizeof(int));
if (!result) {
break;
}

const int work_groups_count[3] = {(int)dim_size, 1, 1};
const int work_group_size[3] = {32, 32, 1}; // test-value

result = context.command_queue_inst_.DispatchCommand(
ReshapeLayerCl::kernel_copy, work_groups_count, work_group_size);
if (!result) {
break;
}

result = inOutRes.ReadData(context.command_queue_inst_, res);
if (!result) {
break;
}

} while (false);
}

void ReshapeLayerCl::copy_cl_fp16(const __fp16 *input, __fp16 *res,
unsigned int input_batch_size,
unsigned int input_channels,
unsigned int input_height,
unsigned int input_width,
RunLayerContext &context) {

bool result = false;

do {
result = context.clCreateKernel(copy_cl_kernel_fp16_,
context.LayerKernel::COPY_FP16,
ReshapeLayerCl::kernel_copy_fp16);
if (!result) {
break;
}

size_t dim_size = sizeof(__fp16) * input_batch_size * input_height *
input_width * input_channels;

opencl::Buffer inputA(context.context_inst_, dim_size, true, nullptr);

opencl::Buffer inOutRes(context.context_inst_, dim_size, true, nullptr);

result = inputA.WriteData(context.command_queue_inst_, input);
if (!result) {
break;
}

result = inOutRes.WriteData(context.command_queue_inst_, res);
if (!result) {
break;
}

result = ReshapeLayerCl::kernel_copy_fp16.SetKernelArguments(
0, &inputA, sizeof(cl_mem));
if (!result) {
break;
}

result = ReshapeLayerCl::kernel_copy_fp16.SetKernelArguments(
1, &inOutRes, sizeof(cl_mem));
if (!result) {
break;
}

result = ReshapeLayerCl::kernel_copy_fp16.SetKernelArguments(
2, &input_batch_size, sizeof(int));
if (!result) {
break;
}

result = ReshapeLayerCl::kernel_copy_fp16.SetKernelArguments(
3, &input_channels, sizeof(int));
if (!result) {
break;
}

result = ReshapeLayerCl::kernel_copy_fp16.SetKernelArguments(
4, &input_height, sizeof(int));
if (!result) {
break;
}

result = ReshapeLayerCl::kernel_copy_fp16.SetKernelArguments(
5, &input_width, sizeof(int));
if (!result) {
break;
}

const int work_groups_count[3] = {(int)dim_size, 1, 1};
const int work_group_size[3] = {32, 32, 1}; // test-value

result = context.command_queue_inst_.DispatchCommand(
ReshapeLayerCl::kernel_copy_fp16, work_groups_count, work_group_size);
if (!result) {
break;
}

result = inOutRes.ReadData(context.command_queue_inst_, res);
if (!result) {
break;
}

} while (false);
}

void ReshapeLayerCl::calcDerivative(RunLayerContext &context) {
if (!context.executeInPlace()) {
context.getOutgoingDerivative(SINGLE_INOUT_IDX)
.copyData(context.getIncomingDerivative(SINGLE_INOUT_IDX));
}
}

void ReshapeLayerCl::setProperty(const std::vector<std::string> &values) {
auto remain_props = loadProperties(values, reshape_props);
if (!remain_props.empty()) {
std::string msg = "[ReshapeLayer] Unknown Layer Properties count " +
std::to_string(remain_props.size());
throw exception::not_supported(msg);
}
}

void ReshapeLayerCl::exportTo(Exporter &exporter,
const ml::train::ExportMethods &method) const {
exporter.saveResult(reshape_props, method, this);
}

} /* namespace nntrainer */
Loading

0 comments on commit 46400ac

Please sign in to comment.