Skip to content

Commit

Permalink
[Benchmarks] Add benchmark gitaction
Browse files Browse the repository at this point in the history
Add gitaction for benchmark, it will automatically run benchmark on clean ubuntu
- now, just run Resnet Application on Ubuntu 22.04
- i will add more tests (Tensor Op, more applications)

**Self evaluation:**
1. Build test:	 [X]Passed [ ]Failed [ ]Skipped
2. Run test:	 [X]Passed [ ]Failed [ ]Skipped

Signed-off-by: Donghak PARK <[email protected]>
  • Loading branch information
DonghakPark committed Aug 14, 2024
1 parent c719a94 commit 45f902c
Show file tree
Hide file tree
Showing 8 changed files with 386 additions and 9 deletions.
55 changes: 55 additions & 0 deletions .github/workflows/ubuntu_benchmarks.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,55 @@
name: Ubuntu Benchmarks

on:
pull_request:
types: [opened, edited, reopened, synchronize]

jobs:
meson_test:

runs-on: ${{ matrix.os }}
strategy:
matrix:
os: [ ubuntu-22.04 ]

steps:
- uses: actions/checkout@v4
- name: Set up Python 3.10
uses: actions/setup-python@v5
with:
python-version: "3.10"
- name: install additional package from PPA for testing
run: sudo add-apt-repository -y ppa:nnstreamer/ppa && sudo apt-get update
- name: install minimal requirements
run: sudo apt-get update && sudo apt-get install -y gcc g++ pkg-config libopenblas-dev libiniparser-dev libjsoncpp-dev libcurl3-dev tensorflow2-lite-dev nnstreamer-dev libglib2.0-dev libgstreamer1.0-dev libgtest-dev ml-api-common-dev flatbuffers-compiler ml-inference-api-dev libunwind-dev libbenchmark-dev
- name: install additional packages for features
run: sudo apt-get install -y python3-dev python3-numpy python3
- name: install build systems
run: sudo apt install meson ninja-build
- run: meson setup build/
env:
CC: gcc
- run: |
meson \
--buildtype=plain \
--prefix=/usr \
--sysconfdir=/etc \
--libdir=lib/x86_64-linux-gnu \
--bindir=lib/nntrainer/bin \
--includedir=include \
-Dinstall-app=false \
-Dreduce-tolerance=false \
-Denable-debug=true \
-Dml-api-support=enabled \
-Denable-nnstreamer-tensor-filter=enabled \
-Denable-nnstreamer-tensor-trainer=enabled \
-Denable-nnstreamer-backbone=true \
-Dcapi-ml-common-actual=capi-ml-common \
-Dcapi-ml-inference-actual=capi-ml-inference \
-Denable-capi=enabled \
-Denable-benchmarks=true \
-Denable-app=false \
build
- run: ninja -C build
- name: run Benchmarks_ResNet
run: cd ./build/benchmarks/benchmark_application && ./Benchmark_ResNet
28 changes: 26 additions & 2 deletions benchmarks/benchmark_application/benchmark_resnet.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -19,13 +19,31 @@
#include <optimizer.h>

#include "benchmark/benchmark.h"
#include <cifar_dataloader.h>
#include <fake_data_gen.h>

using LayerHandle = std::shared_ptr<ml::train::Layer>;
using ModelHandle = std::unique_ptr<ml::train::Model>;

using UserDataType = std::unique_ptr<nntrainer::util::DataLoader>;

uint64_t get_cpu_freq() {
unsigned int freq = 0;
char cur_cpu_name[512];
int cpu = sched_getcpu();
snprintf(cur_cpu_name, sizeof(cur_cpu_name),
"/sys/devices/system/cpu/cpu%d/cpufreq/scaling_cur_freq", cpu);

FILE* f = fopen(cur_cpu_name, "r");
if (f != nullptr) {
if (fscanf(f, "%d", &freq) != 0) {
fclose(f);
return uint64_t(freq) * 1000;
}
fclose(f);
}
return 0;
}

/** cache loss values post training for test */
float training_loss = 0.0;
float validation_loss = 0.0;
Expand Down Expand Up @@ -276,8 +294,14 @@ static void Test_ResnetFull(benchmark::State &state) {
std::array<UserDataType, 2> user_datas;
user_datas = createFakeDataGenerator(batch_size, 512, data_split);
auto &[train_user_data, valid_user_data] = user_datas;
for (auto _ : state)
auto check_freq = get_cpu_freq();
state.counters["check_freq"] = check_freq;
for (auto _ : state){
createAndRun(epoch, batch_size, train_user_data, valid_user_data);

}


}

BENCHMARK(Test_ResnetFull);
Expand Down
10 changes: 4 additions & 6 deletions benchmarks/benchmark_application/meson.build
Original file line number Diff line number Diff line change
@@ -1,15 +1,13 @@
build_root = meson.build_root()

sources = ['benchmark_resnet.cpp',
cifar_path / 'cifar_dataloader.cpp']
fake_datagen_path / 'fake_data_gen.cpp']

resnet_dependencies = [app_utils_dep,
iniparser_dep,
nntrainer_dep,
resnet_dependencies = [nntrainer_dep,
nntrainer_ccapi_dep,
benchmark_dep, ]

executable('Benchmark_ResNet',
sources,
include_directories : [include_directories('.'), cifar_include_dir],
dependencies : resnet_dependencies)
include_directories : [include_directories('.'), fake_datagen_include_dir],
dependencies : resnet_dependencies)
173 changes: 173 additions & 0 deletions benchmarks/fake_data_gen/fake_data_gen.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,173 @@
// SPDX-License-Identifier: Apache-2.0
/**
* Copyright (C) 2020 Jihoon Lee <[email protected]>
*
* @file cifar_dataloader.h
* @date 24 Jun 2021s
* @brief dataloader for cifar
* @see https://github.com/nnstreamer/nntrainer
* @author Jihoon Lee <[email protected]>
* @bug No known bugs except for NYI items
*/

#include "fake_data_gen.h"

#include <algorithm>
#include <cstring>
#include <iostream>
#include <nntrainer_error.h>
#include <random>

namespace nntrainer::util {

namespace {

/**
* @brief fill label to the given memory
*
* @param data data to fill
* @param length size of the data
* @param label label
*/
void fillLabel(float *data, unsigned int length, unsigned int label) {
if (length == 1) {
*data = label;
return;
}

memset(data, 0, length * sizeof(float));
*(data + label) = 1;
}

/**
* @brief fill last to the given memory
* @note this function increases iteration value, if last is set to true,
* iteration resets to 0
*
* @param[in/out] iteration current iteration
* @param data_size Data size
* @return bool true if iteration has finished
*/
bool updateIteration(unsigned int &iteration, unsigned int data_size) {
if (iteration++ == data_size) {
iteration = 0;
return true;
}
return false;
};

} // namespace

RandomDataLoader::RandomDataLoader(const std::vector<TensorDim> &input_shapes,
const std::vector<TensorDim> &output_shapes,
int data_size_) :
iteration(0),
data_size(data_size_),
input_shapes(input_shapes),
output_shapes(output_shapes),
input_dist(0, 255),
label_dist(0, output_shapes.front().width() - 1) {
NNTR_THROW_IF(output_shapes.empty(), std::invalid_argument)
<< "output_shape size empty not supported";
NNTR_THROW_IF(output_shapes.size() > 1, std::invalid_argument)
<< "output_shape size > 1 is not supported";
}

void RandomDataLoader::next(float **input, float **label, bool *last) {
auto fill_input = [this](float *input, unsigned int length) {
for (unsigned int i = 0; i < length; ++i) {
*input = input_dist(rng);
input++;
}
};

auto fill_label = [this](float *label, unsigned int batch,
unsigned int length) {
unsigned int generated_label = label_dist(rng);
fillLabel(label, length, generated_label);
label += length;
};

if (updateIteration(iteration, data_size)) {
*last = true;
return;
}

float **cur_input_tensor = input;
for (unsigned int i = 0; i < input_shapes.size(); ++i) {
fill_input(*cur_input_tensor, input_shapes.at(i).getFeatureLen());
cur_input_tensor++;
}

float **cur_label_tensor = label;
for (unsigned int i = 0; i < output_shapes.size(); ++i) {
fill_label(*label, output_shapes.at(i).batch(),
output_shapes.at(i).getFeatureLen());
cur_label_tensor++;
}
}

Cifar100DataLoader::Cifar100DataLoader(const std::string &path, int batch_size,
int splits) :
batch(batch_size),
current_iteration(0),
file(path, std::ios::binary | std::ios::ate) {
constexpr char error_msg[] = "failed to create dataloader, reason: ";

NNTR_THROW_IF(!file.good(), std::invalid_argument)
<< error_msg << " Cannot open file";

auto pos = file.tellg();
NNTR_THROW_IF((pos % Cifar100DataLoader::SampleSize != 0),
std::invalid_argument)
<< error_msg << " Given file does not align with the format";

auto data_size = pos / (Cifar100DataLoader::SampleSize * splits);
idxes = std::vector<unsigned int>(data_size);
std::cout << "path: " << path << '\n';
std::cout << "data_size: " << data_size << '\n';
std::iota(idxes.begin(), idxes.end(), 0);
std::shuffle(idxes.begin(), idxes.end(), rng);

/// @note this truncates the remaining data of less than the batch size
iteration_per_epoch = data_size;
}

void Cifar100DataLoader::next(float **input, float **label, bool *last) {
/// @note below logic assumes a single input and the fine label is used

auto fill_one_sample = [this](float *input_, float *label_, int index) {
const size_t error_buflen = 102;
char error_buf[error_buflen];
NNTR_THROW_IF(!file.good(), std::invalid_argument)
<< "file is not good, reason: "
<< strerror_r(errno, error_buf, error_buflen);
file.seekg(index * Cifar100DataLoader::SampleSize, std::ios_base::beg);

uint8_t current_label;
uint8_t fine_label; // it doesn't need for our application, so abandon it
file.read(reinterpret_cast<char *>(&fine_label), sizeof(uint8_t));
file.read(reinterpret_cast<char *>(&current_label), sizeof(uint8_t));

fillLabel(label_, Cifar100DataLoader::NumClass, current_label);

for (unsigned int i = 0; i < Cifar100DataLoader::ImageSize; ++i) {
uint8_t data;
file.read(reinterpret_cast<char *>(&data), sizeof(uint8_t));
*input_ = data / 255.f;
input_++;
}
};

fill_one_sample(*input, *label, idxes[current_iteration]);
current_iteration++;
if (current_iteration < iteration_per_epoch) {
*last = false;
} else {
*last = true;
current_iteration = 0;
std::shuffle(idxes.begin(), idxes.end(), rng);
}
}

} // namespace nntrainer::util
Loading

0 comments on commit 45f902c

Please sign in to comment.