Skip to content

Commit

Permalink
[Layer] add Weight Layer
Browse files Browse the repository at this point in the history
- This layer contains only weights for building tensor-level graph

**Self-evaluation:**
1. Build test: [X]Passed [ ]Failed [ ]Skipped
2. Run test:   [X]Passed [ ]Failed [ ]Skipped

Signed-off-by: Seungbaek Hong <[email protected]>
  • Loading branch information
baek2sm authored and jijoongmoon committed Aug 9, 2024
1 parent 05f7b4a commit 23c0983
Show file tree
Hide file tree
Showing 11 changed files with 267 additions and 5 deletions.
17 changes: 13 additions & 4 deletions api/ccapi/include/layer.h
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,7 @@ namespace train {
*/
enum LayerType {
LAYER_IN = ML_TRAIN_LAYER_TYPE_INPUT, /**< Input Layer type */
LAYER_WEIGHT = ML_TRAIN_LAYER_TYPE_WEIGHT, /**< Weight Layer type */
LAYER_FC = ML_TRAIN_LAYER_TYPE_FC, /**< Fully Connected Layer type */
LAYER_SWIGLU = ML_TRAIN_LAYER_TYPE_SWIGLU, /**< Swiglu Layer type */
LAYER_BN = ML_TRAIN_LAYER_TYPE_BN, /**< Batch Normalization Layer type */
Expand Down Expand Up @@ -102,7 +103,7 @@ enum LayerType {
derivative */
LAYER_UPSAMPLE2D, /**< Upsample 2D Layer type */
LAYER_RMSNORM = ML_TRAIN_LAYER_TYPE_RMSNORM, /**<RMS NORM Layer */
LAYER_UNKNOWN = ML_TRAIN_LAYER_TYPE_UNKNOWN /**< Unknown */
LAYER_UNKNOWN = ML_TRAIN_LAYER_TYPE_UNKNOWN /**< Unknown */
};

/**
Expand Down Expand Up @@ -290,6 +291,14 @@ Input(const std::vector<std::string> &properties = {}) {
return createLayer(LayerType::LAYER_IN, properties);
}

/**
* @brief Helper function to create weight layer
*/
inline std::unique_ptr<Layer>
WeightLayer(const std::vector<std::string> &properties = {}) {
return createLayer(LayerType::LAYER_WEIGHT, properties);
}

/**
* @brief Helper function to create fully connected layer
*/
Expand All @@ -311,9 +320,9 @@ Swiglu(const std::vector<std::string> &properties = {},
/**
* @brief Helper function to create RMS normalization layer for GPU
*/
inline std::unique_ptr<Layer> RMSNormCl(
const std::vector<std::string> &properties = {},
const LayerComputeEngine &compute_engine = LayerComputeEngine::GPU) {
inline std::unique_ptr<Layer>
RMSNormCl(const std::vector<std::string> &properties = {},
const LayerComputeEngine &compute_engine = LayerComputeEngine::GPU) {
return createLayer(LayerType::LAYER_RMSNORM, properties, compute_engine);
}

Expand Down
3 changes: 2 additions & 1 deletion api/nntrainer-api-common.h
Original file line number Diff line number Diff line change
Expand Up @@ -64,6 +64,7 @@ typedef enum {
28, /**< Positional Encoding Layer type (Since 7.0) */
ML_TRAIN_LAYER_TYPE_IDENTITY = 29, /**< Identity Layer type (Since 8.0) */
ML_TRAIN_LAYER_TYPE_SWIGLU = 30, /**< Swiglu Layer type */
ML_TRAIN_LAYER_TYPE_WEIGHT = 31, /**< Weight Layer type (Since 9.0)*/
ML_TRAIN_LAYER_TYPE_PREPROCESS_FLIP =
300, /**< Preprocess flip Layer (Since 6.5) */
ML_TRAIN_LAYER_TYPE_PREPROCESS_TRANSLATE =
Expand All @@ -77,7 +78,7 @@ typedef enum {
ML_TRAIN_LAYER_TYPE_LOSS_CROSS_ENTROPY_SOFTMAX = 502, /**< Cross Entropy with
Softmax Loss Layer type (Since 6.5) */
ML_TRAIN_LAYER_TYPE_RMSNORM = 503, /**< Cross Entropy with */
ML_TRAIN_LAYER_TYPE_UNKNOWN = 999 /**< Unknown Layer */
ML_TRAIN_LAYER_TYPE_UNKNOWN = 999 /**< Unknown Layer */
} ml_train_layer_type_e;

/**
Expand Down
3 changes: 3 additions & 0 deletions nntrainer/app_context.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -74,6 +74,7 @@
#include <split_layer.h>
#include <time_dist.h>
#include <upsample2d_layer.h>
#include <weight_layer.h>
#include <zoneout_lstmcell.h>

#ifdef ENABLE_TFLITE_BACKBONE
Expand Down Expand Up @@ -245,6 +246,8 @@ static void add_default_object(AppContext &ac) {
using LayerType = ml::train::LayerType;
ac.registerFactory(nntrainer::createLayer<InputLayer>, InputLayer::type,
LayerType::LAYER_IN);
ac.registerFactory(nntrainer::createLayer<WeightLayer>, WeightLayer::type,
LayerType::LAYER_WEIGHT);
ac.registerFactory(nntrainer::createLayer<FullyConnectedLayer>,
FullyConnectedLayer::type, LayerType::LAYER_FC);
ac.registerFactory(nntrainer::createLayer<BatchNormalizationLayer>,
Expand Down
10 changes: 10 additions & 0 deletions nntrainer/layers/common_properties.h
Original file line number Diff line number Diff line change
Expand Up @@ -114,6 +114,16 @@ class Trainable : public nntrainer::Property<bool> {
using prop_tag = bool_prop_tag;
};

/**
* @brief Tensor Dimension property
*
*/
class TensorDimension : public TensorDimProperty {
public:
static constexpr const char *key = "dim"; /**< unique key to access */
using prop_tag = dimension_prop_tag; /**< property type */
};

/**
* @brief trainable property, use this to set and check how if certain layer is
* trainable
Expand Down
1 change: 1 addition & 0 deletions nntrainer/layers/meson.build
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@ nntrainer_inc_abs += meson.current_source_dir() / 'loss'

layer_sources = [
'activation_layer.cpp',
'weight_layer.cpp',
'addition_layer.cpp',
'attention_layer.cpp',
'mol_attention_layer.cpp',
Expand Down
87 changes: 87 additions & 0 deletions nntrainer/layers/weight_layer.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,87 @@
// SPDX-License-Identifier: Apache-2.0
/**
* Copyright (C) 2024 SeungBaek Hong <[email protected]>
*
* @file weight_layer.cpp
* @date 2 August 2024
* @brief This is a layer that simply stores a weight tensor without any
* operation.
* @see https://github.com/nnstreamer/nntrainer
* @author SeungBaek Hong <[email protected]>
* @bug No known bugs except for NYI items
*
*/

#include <common_properties.h>
#include <layer_context.h>
#include <lazy_tensor.h>
#include <nntrainer_error.h>
#include <nntrainer_log.h>
#include <node_exporter.h>
#include <util_func.h>
#include <weight_layer.h>

#include <iostream>

namespace nntrainer {

static constexpr size_t SINGLE_INOUT_IDX = 0;

WeightLayer::WeightLayer() : LayerImpl() {
weight_idx.fill(std::numeric_limits<unsigned>::max());
}

void WeightLayer::finalize(InitLayerContext &context) {
auto &weight_regularizer =
std::get<props::WeightRegularizer>(*layer_impl_props);
auto &weight_regularizer_constant =
std::get<props::WeightRegularizerConstant>(*layer_impl_props);
auto &weight_initializer =
std::get<props::WeightInitializer>(*layer_impl_props);
auto &weight_decay = std::get<props::WeightDecay>(*layer_impl_props);

const auto &weight_dim = std::get<props::TensorDimension>(weight_props).get();

std::vector<TensorDim> output_dims(1);

output_dims[0] = weight_dim;

output_dims[0].setTensorType(
{context.getFormat(), context.getActivationDataType()});

context.setOutputDimensions(output_dims);

weight_idx[0] = context.requestWeight(
weight_dim, weight_initializer, weight_regularizer,
weight_regularizer_constant, weight_decay, "weight", true);
}

void WeightLayer::exportTo(Exporter &exporter,
const ml::train::ExportMethods &method) const {
LayerImpl::exportTo(exporter, method);
exporter.saveResult(weight_props, method, this);
}

void WeightLayer::setProperty(const std::vector<std::string> &values) {
auto remain_props = loadProperties(values, weight_props);
LayerImpl::setProperty(remain_props);
}

void WeightLayer::forwarding(RunLayerContext &context, bool training) {
Tensor &weight = context.getWeight(weight_idx[0]);
Tensor &output = context.getOutput(SINGLE_INOUT_IDX);
output.copy(weight);
}

void WeightLayer::calcDerivative(RunLayerContext &context) {
throw exception::not_supported(
"calcDerivative for weight layer is not supported");
}

void WeightLayer::calcGradient(RunLayerContext &context) {
Tensor &djdw = context.getWeightGrad(weight_idx[0]);
const Tensor &derivative_ = context.getIncomingDerivative(SINGLE_INOUT_IDX);
djdw.copy(derivative_);
}

} /* namespace nntrainer */
104 changes: 104 additions & 0 deletions nntrainer/layers/weight_layer.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,104 @@
// SPDX-License-Identifier: Apache-2.0
/**
* Copyright (C) 2024 SeungBaek Hong <[email protected]>
*
* @file weight_layer.h
* @date 2 August 2024
* @brief This is a layer that simply stores a weight tensor without any
* operation.
* @see https://github.com/nnstreamer/nntrainer
* @author SeungBaek Hong <[email protected]>
* @bug No known bugs except for NYI items
*
*/

#ifndef __WEIGHT_LAYER_H__
#define __WEIGHT_LAYER_H__
#ifdef __cplusplus

#include <common_properties.h>
#include <layer_impl.h>

namespace nntrainer {

/**
* @class Weight Layer
* @brief A layer that simply stores a weight tensor
*/
class WeightLayer : public LayerImpl {
public:
/**
* @brief Constructor of Weight Layer
*/
WeightLayer();

/**
* @brief Destructor of Weight Layer
*/
~WeightLayer() = default;

/**
* @brief Move constructor.
* @param[in] WeightLayer &&
*/
WeightLayer(WeightLayer &&rhs) noexcept = default;

/**
* @brief Move assignment operator.
* @parma[in] rhs WeightLayer to be moved.
*/
WeightLayer &operator=(WeightLayer &&rhs) = default;

/**
* @copydoc Layer::finalize(InitLayerContext &context)
*/
void finalize(InitLayerContext &context) override;

/**
* @copydoc Layer::forwarding(RunLayerContext &context, bool training)
*/
void forwarding(RunLayerContext &context, bool training) override;

/**
* @copydoc Layer::calcDerivative(RunLayerContext &context)
*/
void calcDerivative(RunLayerContext &context) override;

/**
* @copydoc Layer::calcGradient(RunLayerContext &context)
*/
void calcGradient(RunLayerContext &context) override;

/**
* @copydoc Layer::exportTo(Exporter &exporter, ml::train::ExportMethods
* method)
*/
void exportTo(Exporter &exporter,
const ml::train::ExportMethods &method) const override;

/**
* @copydoc Layer::getType()
*/
const std::string getType() const override { return WeightLayer::type; };

/**
* @copydoc Layer::supportBackwarding()
*/
bool supportBackwarding() const override { return true; }

/**
* @copydoc Layer::setProperty(const PropertyType type, const std::string
* &value)
*/
void setProperty(const std::vector<std::string> &values) override;

inline static const std::string type = "weight";

private:
std::tuple<props::TensorDimension> weight_props;
std::array<unsigned int, 1> weight_idx; /**< indices of the weights */
};
} // namespace nntrainer

#endif /* __cplusplus */
#endif /* __WEIGHT_LAYER_H__ */
13 changes: 13 additions & 0 deletions nntrainer/utils/base_properties.h
Original file line number Diff line number Diff line change
Expand Up @@ -277,6 +277,19 @@ class EnumProperty : public Property<typename EnumInfo::Enum> {
static EnumInfo enum_info_;
};

/**
* @brief abstract class for tensor dimension
*
*/
class TensorDimProperty : public Property<TensorDim> {
public:
/**
* @brief Destroy the TensorDim Property object
*
*/
virtual ~TensorDimProperty() = default;
};

/**
* @brief abstract class for positive integer
*
Expand Down
3 changes: 3 additions & 0 deletions test/ccapi/unittest_ccapi.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -61,6 +61,9 @@ TEST(ccapi_layer, construct_02_p) {
EXPECT_NO_THROW(layer = ml::train::layer::Input());
EXPECT_EQ(layer->getType(), "input");

EXPECT_NO_THROW(layer = ml::train::layer::WeightLayer());
EXPECT_EQ(layer->getType(), "weight");

EXPECT_NO_THROW(layer = ml::train::layer::FullyConnected());
EXPECT_EQ(layer->getType(), "fully_connected");

Expand Down
1 change: 1 addition & 0 deletions test/unittest/layers/meson.build
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,7 @@ test_target = [
'unittest_layers.cpp',
'unittest_layers_impl.cpp',
'unittest_layers_input.cpp',
'unittest_layers_weight.cpp',
'unittest_layers_loss.cpp',
'unittest_layers_fully_connected.cpp',
'unittest_layers_batch_normalization.cpp',
Expand Down
30 changes: 30 additions & 0 deletions test/unittest/layers/unittest_layers_weight.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
// SPDX-License-Identifier: Apache-2.0
/**
* Copyright (C) 2024 SeungBaek Hong <[email protected]>
*
* @file unittest_layers_weight.cpp
* @date 30 July 2024
* @brief Weight Layer Test
* @see https://github.com/nnstreamer/nntrainer
* @author SeungBaek Hong <[email protected]>
* @bug No known bugs except for NYI items
*/
#include <tuple>

#include <gtest/gtest.h>

#include <layers_common_tests.h>
#include <weight_layer.h>

auto semantic_weight = LayerSemanticsParamType(
nntrainer::createLayer<nntrainer::WeightLayer>, nntrainer::WeightLayer::type,
{"dim=1:1:1"}, LayerCreateSetPropertyOptions::AVAILABLE_FROM_APP_CONTEXT,
false, 1);

auto semantic_weight_multi = LayerSemanticsParamType(
nntrainer::createLayer<nntrainer::WeightLayer>, nntrainer::WeightLayer::type,
{"dim=1:1:1"}, LayerCreateSetPropertyOptions::AVAILABLE_FROM_APP_CONTEXT,
false, 2);

GTEST_PARAMETER_TEST(Weight, LayerSemantics,
::testing::Values(semantic_weight, semantic_weight_multi));

0 comments on commit 23c0983

Please sign in to comment.